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ASYMPTOTIC RATIO OF HARMONIC MEASURES OF SLIT SIDES
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The article is devoted to the geometry of solutions to the chordal Léwner equation which is based on the comparison of singular
solutions and harmonic measures for the sides of a slit in the upper half-plane generated by a driving term. An asymptotic ratio for
harmonic measures of slit sides is found for a slit which is tangential to a straight line under a given angle, and for a slit with high
order tangency to a circular arc tangential to the real axis.

Key words: Ldwner equation, singular solution, harmonic measure, half-plane capacity.

INTRODUCTION

The famous Lowner differential equation have been introduced in 1923 [1] and was aimed to give a
parametric representation of slit domains. In this article we describe an asymptotic behavior of singular
solutions and harmonic measures for the sides of a slit in domains generated by a driving term of the
Lowner equation.

The chordal version of the Lowner equation deals with the upper half-plane H = {z : Imz > 0},
R = OH, and functions f(z,t) normalized near infinity by

2t 1
flat)=2+=+0 (—2>
z z
which solve the chordal Lowner differential equation

df(z,t) 2 _
i T @0==s 120 M

and map subdomains of H onto H. Here A(¢) is a real-valued continuous driving term.

Let ¢ :=7[0,t] = {~v(z) : 0 < x <t} be a simple continuous curve in HU {0} with endpoints v(0) =0
and v(t), 0 < ¢t < T. Then there is a unique map f(z,t) : H\ 7 — H satisfying the chordal Lowner
equation (1) with A(¢) uniquely determined by ~[0,¢]. The function f(z,¢) can be extended continuously to
RU~(t), and f(y(t),t) = A(t). The value ¢ is called the half-plane capacity of the curve =, t = hcap(y),
see, e.g. [2].

We say that v, € C", n € N, on [0, 5] if, for the arc-length parameter s of v, y(¢(s)) has a continuous
derivative () in s on [0,S], t(S) = T. All the derivatives v 1 <k <n, at s =0 are understood as
one-side derivatives. A curve v € C™, v(0) = 0, is said to have at least n-order tangency with a ray
Ip={e?s:5>0},0 cR, at s =0 if

Y(t(s)) = €s + o(s™), s — +0.
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Two curves v[0,s] € C™ and T'[0,s] € C™ are said to have at least n-order tangency at s = 0 if
derivatives 4(*) and T'*) in s at s = 0 coincide, 0 < k < n.

The extended function f(z,t) maps ~; onto a segment I = I(t) = [f2(0,t), f1(0,¢)] while f(R) =R\ I.
The function f1(0,¢) is the maximal singular solution to the chordal Lowner equation (1), and f2(0,¢) is
the minimal singular solution to (1). Both of these solutions correspond to the singular point f(0,0) =0
of equation (1).

The curve v; has two sides 14 and 79, which define different prime ends at the same points, except
for its tip. We say that ~y; is the left side of ~, if going along the boundary of the domain H \ ~; and
moving along R from (—oc0) to 0, we first meet the side 41; and then 7. In this case, vo; is called the
right side of ;. The two parts [f2(0,1), A(t)] and [A(¢), f1(0,t)] of segment I(¢) are the images of the two
sides 71¢ and ~9; of v under f(z,t), respectively.

The harmonic measures w(f~*(4,%); vue, H \ v¢) of yx¢ at f~1(i,t) with respect to H \ 7; are defined
by the functions wy which are harmonic on H\ v; and continuously extended on its closure except for the
endpoints of ¢, Wk|v,, = 1, WklrRU ) = 0, kK = 1,2, see, e.g., [3, § 3.6]. Denote

mk(t) = w(fil(i’t);’yth\vt% kzlaz
In Section 1, we prove the following theorem.

Theorem 1. Let v € C*, (0) = 0, Im~(t) > 0 for t > 0, have at least 4-order tangency at the
origin to the straight line under the angle 5(1—3), —1 < 3 < 1, to the real axis R, and let f(z,t) map
H\ v; onto H and solve the chordal Léwner equation (1). Then

m m1<t) . l-i-ﬁ
t—+0mo(t) 1-p’

where
my(t) == w(f e H\ ), k=12,
Y1t iS the left side of ~:, and ~yo: is the right side of ;.

The most important argument in the proof is the comparison of asymptotic parametric representations
of v; in ¢ and s at s = 0. This approach can be compared with the result by Earle and Epstein [4].

In Section 2, we solve a similar problem for a curve 7, which has at least 6-order tangency with a
circular arc in H U {0} tangential to R at the origin. Since a scaling time change t — «?t in the Lowner
equation (1) is accompanied by changing A(t) — 1A(a?t) and f(z,t) — If(az,a’), a € R, we can
assume without loss of generality that the circular arc is of radius 1, and the argument of its points is
increasing when going from 0. We prove the following theorem.

Theorem 2. Let v, € C%, 4(0) = 0, Im~(t) > 0 and Re~(t) > 0 for t > 0, have at least 6-order
tangency at the origin to the circular arc of radius 1 centered at i, and let f(z,t) map H\ v onto H
and solve the chordal Lowner equation (1). Then

ME(t)
=2
o My(t)

where
My(t) = w(f (0 ), H\ ), k=12,
Y1t is the left side of i, and vy is the right side of ;.

1. PROOF OF THEOREM 1

Proof of Theorem 1. For 3 = 0, Theorem 1 has been proved [5]. The cases # > 0 and § < 0 are
symmetric to each other, and we will stop only on 3 > 0.

The Lowner equation (1) can be integrated in quadratures in particular cases [6]. For example, if
A(t) = eV't, ¢ > 0, then a solution f.(z,t) to equation (1) maps H \ v onto H where ~; is parameterized
as

v[0,t] = {2 =Byz : 0 <z <t},
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with B = B(c) = |B(c)|e??),

()] — 2 Y10+ ) W 9(0)_3(1_40 )
N V2416 — ¢ ’ 2 V2 116/

Suppose that a C*-slit , satisfies the conditions of Theorem 1. Then there exists a driving function
A(t) € Lip(3) such that a solution w = f(z,t) to equation (1) maps H \ v onto H. For the arc-length
parameter s, y(t(s)) is represented as

v(t(s)) = es + o(s*), s — +0. 2)
Denote
Ip(t) = {xe : 0 <2 < t}, 0<9<g, t>0.
There is ¢ > 0 such that .
p= NZEST: 3)

for which 6 = 0(c) = 5(1 — ). Then f.(z,7) maps H\ Iy (|B(c)|y/T) onto H. The length o(7) of
Iy(e)(|B(c)|+/T) and the half-plane capacity 7 of Iy (|B(c)|\/T) are related by

o(r) = |B(o)|V/7T, 7> 0. (4)

Let s denote the length of v, and let o denote the length of projection of 74,y onto Iy (T'). There
is a C*-dependence s = s(0),

5(0) =0, s'(0) =1, s (0) =0, k=23,4.

Therefore,
s =0+ o(c?), o — —+0. (5)

Asymptotic expansion (2) implies an asymptotic behavior of a distance between ~; and its projection
on Iy,

dist(yi(s), Lo(ey (0(s))) = o(a™(s)), s — +0.

Lind, Marshall and Rohde [2] studied the closeness of half-plane capacities for two curves which are
close together. According to Lemma 4.10 [2], we have that

t(s) = 7(o(s)) = o(s*), s — +0,
where o(7) is given by (4). Hence, due to (4) and (5),
t(s(0)) = 7(0) + 0(s*(0)) = 7(0) + 0(c?) = | B(c)| 2s* + o(s?), s — +0.
Take into account (2) and rewrite the last relation in the form

(1) = [Ble)Vt+a(t)Vt,  lim a(t) =0. (6)

t——40

Choose an arbitrary sequence {x,} of positive numbers x,,, x,, — oo as n — oo, and denote

zzgn(w,t)IZ@f_l(\/%,xi), n=12,.... (7)

The function z = f~!(w,t) maps H onto H \ v[0,¢], f~1(\(t),t) = v(t). So the functions g, (w,t) map H
onto H \ v(™[0,#] where

100 = VA () = BNV +a () Vi

(D)) vers
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We see that
. t
fy(n)(t) _ ez@(C)‘B(CH\/E =« (m) Vi — 0, n — 0o,

and the convergence is uniform with respect to ¢ € [0, 7.

The Radé theorem [7], see also [8, p. 60], states that a sequence {h,,} of conformal mappings h,, from
the unit disk D onto simply connected domains D,, bounded by Jordan curves dD,,, 0 € D,,, hy,(0) =0,
h!.(0) > 0, converges uniformly on the closure of D to h : D — D, 9D is bounded by a Jordan curve,
if and only if D,, converges to the kernel D and, for every e > 0, there exists N > 0 such that, for all
n > N, there is a one-to-one correspondence z, : dD,, — 9D, |2,(¢) — (| <€, ¢ € dD,,. Markushevich [9]
generalized the Radd theorem to domains with arbitrary boundaries.

Apply the Radé — Markushevich theorem to g, o p with a conformal mapping p from D onto H and
obtain that the sequence {g,(w,t)} converges to f.'(w,t) as n — oo uniformly on compact subsets
of HUR.

Denote by I';[0, 7(t)] the left side of the segment Iy« (|B(c)|\/7) and denote by I'5[0,7(t)] the right
side of this segment. Similarly, denote v1,,[0,t] the left side of v(™[0,t], and denote 72,[0,t] the right
side of 4(™[0,¢]. The functions g;'(z,t) map 71,[0,¢] and 72,[0,] onto segments I, = I ,(t) C R and
Iy, = I»,(t) C R, respectively. It is known, see, e.g. [5], that slit sides I';[0,7(¢)] and I'3[0,7(¢)] are
mapped by f.(z,t) onto

L =1(t) =

_ 2
covetlo V;“%,C\/z and L= L(t) = |evi

V2 +16
SR

respectively. The uniform convergence of g, to f.! implies that I1,(¢) tend to I;(¢), and Is,(t) tend
to I»(t) as n — oc.

Denote by ~1,[0,t] and ~4,[0,t] the left and the right sides of |0, i], respectively. The func-
tion f(z,--) maps slit sides ~1,,[0,¢] and ~3,,[0,¢] onto segments I{, = I{,(t) C R and I}, = I}, (t) C R,
respectivelgl. Compare I, (t) and I, (t) by (7) and conclude that Iy, (t) = /z,1},(t), and so

meas Iy, (t) = /T, meas I}, (t), k=1,2, n>1, 0<t<T.
The harmonic measure is invariant under conformal transformations. This gives that
) w(i, I, (), H)

) w(F M )0, ) HA ()
) " Wl )20, HHNA(L)) (i, I, (1), H)

For k = 1,2, n > 1, the harmonic measure w(i; I, (¢t),H) of I;, (t) at ¢ with respect to H equals the
angle divided over m under which the segment I}, (t) is seen from the point ¢. Similarly, the harmonic
measure w(i; I, (t),H) of Ix,(t) at i with respect to H equals the angle divided over = under which the
segment Iy, (t) is seen from the point 4, see, e.g. [8, p. 334]. This shows that the last term in the chain
of equalities has a limit as n — oo, and

. ! - ! /
lim w(z.,Iln(t),]HI) ~ fim tan(ww(z.,fln(t),H)) ~ lim meas I1,,(t) ~ lim measIln(t).
n—oo w(i, I5 (t),H) n—oco tan(nw(i, I}, (t),H)) n—ocomeasl) (t) n—oc meas Iy, (t)

This limit exists for every sequence {z,} tending to infinity. So there exists a limit for the ratio
of mq(t) and ma(t) as t — +0, and

m(t) I ml(%) _ meas [1(t) Vc2+16+c 147
= t

=40 ma(t)  n—oomao(L) =40 measlr(t) V2 +16—c¢ 1-3
where (3 is given by (3). This leads to the conclusion desired in Theorem 1 and completes the proof.

2. PROOF OF THEOREM 2

Proof of Theorem 2. The Lowner equation (1) admits an explicit integration [10] in the case
when 79[0,¢] is a circular arc centered at i, v(0) = 0, with an implicitly given driving function A(¢).
To be concrete, we will consider ~y[0,¢] such that the argument of (70[0,¢] — ) increases in ¢. Let a
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solution fo(z,t) to equation (1) map H \ 70[0,¢] onto H. Its inverse f; *(w,t) is represented [10] by the
Christoffel — Schwarz integral

1

1 :/E (1—)\0w)dw :ilogw_ﬁl—f—ﬁz—’—ﬁl 1
fo t(w,t) o (I1=p51w)2(1=pGyw) 21 “w—PF2  fo—P w—pFr]
where 31 = 31(t) and 32 = [3»(t) are expanded in powers of /%,
3
Bi(t) = AV Aot + A3V . A= S‘f :
™
and
Bo(t) = Byt + BoV2 +..., By = V127,
The driving function \o(t) is evaluated by
Xo(t) = 2B1(t) + Bat) = C1Vt+ CoVE2 + ..., C, = By.

Suppose that a CS-slit v, satisfies the conditions of Theorem 2. Then there exists a driving func-
tion A(¢) such that a solution w = f(z,t) to equation (1) maps H\ 7 onto H. For the arc-length parameter
s, represent a transformation of y(¢(s)),

o 29(t(s))
M) = S ()

The function fo(z,7) maps H \ 700, 7] onto H. Hence,

=54 0(s°), s — +0. (8)

o 2fy Hw,T)
ol ) = G if (w,m)

maps H onto the exterior of the disk of radius 1 centered at (—¢) and slit along the segment [0,0] C R.
The length o(7) of [0, 0] and the half-plane capacity 7 of [0, 7] are related by

o(1) = Qf()_l(AO(T)aT) _ 3T 4 o 37_2 T —
( ) 2+Z'f0_1()\0(7'),7') Bl\/_+ (\/7% +0. (9)

Let s denote the length of #[0, s], and let o denote the length of projection of 5[0, s] onto [0, o]. There
is a C®-dependence s = s(0),

5(0)=0, s0)=1, s®0)=0,k=2,...,6.

Therefore,
s =0+ o0(c%), o — +0. (10)

Asymptotic expansion (8) implies an asymptotic behavior of a distance between 4 and its projection
on [0, 0],
dist(7[0, 5, [0, 0(s)]) = 0(0%(5)), s — +0.

According to Lemma 4.10 [2], we have that
t(s) = 7(o(s)) = o(s), s —+0,
where o(7) is given by (9). Hence, due to (9) and (10),
t(s(0)) = 7(0) + o(s*(0)) = 7(0) + 0(c®) = By *s® +0(s®), s — +0.
Take into account (8) and rewrite the last relation in the form

Y(t)=BiVi+at)VE,  lim a(t) =0. (11)
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Choose an arbitrary sequence {x,} of positive numbers z,,, x, — oo as n — oo, and denote

1 w t
= gn(w,t) := x, ,— =1,2,.... 12
2 = gulw,t) == Vauf (ﬂ_ﬁ) n (12)
The function z = f~*(w,t) maps H onto H \ 7[0,¢], f~1(A(¢),t) = v(¢). So the functions
Glw,t) = 29Dy
2+ ign(w, 1)

map H onto the exterior of the disk of radius 1 centered at (—i) minus (™) (¢) where

5 () = /Ty <x’;> —BVi+a (;) i,

n

G, <«ﬁaﬁn A (%) ,t> =5 (), 0<t<T.

We see that
t
Tn

and the convergence is uniform with respect to ¢ € [0, 7.

Apply the Radé — Markushevich theorem to g, op with a conformal mapping p from D onto H and obtain
that the sequence {G,,(w,t)} converges to Go(w,t) which implies that {g,(w,t)} converges to f; *(w,t)
as n — oo uniformly on compact subsets of HUR.

Denote by I'1 [0, 7(t)] the left side of the circular arc vy[0, 7] and denote by I'5[0, 7(¢)] the right side of
this circular arc. Similarly, denote v1,,[0,¢] the left side of

2710, ]

M0, 4] = T
e Iy

and denote 7,,[0,¢] the right side of (™[0,¢]. The functions g '(z,t) map v1,[0,t] and 72,[0,] onto
segments I, = I1,(t) C R and Iz, = I2,(t) C R, respectively. It is shown [10] that slit sides I';[0, 7(t)]

and T'2[0, 7(t)] are mapped by fo(z,t) onto

IL=NL(t) = [Bu(®), ()] and Iy = L(t) = [Mo(t), B2(t)],

respectively. The uniform convergence of g, to fy ' implies that Iy, (t) tend to I;(t), and Is,(t) tend
to Ir(t) as n — oo.

Denote by ~1,[0,t] and ~4,[0,¢] the left and the right sides of ~|0, ﬁ] respectively. The func-
tion f(z,--) maps slit sides ~1,[0,¢] and v3,,[0,¢] onto segments I{, = I{,(t) C R and I}, = I}, (t) C R,
respectivel?. Compare Iy, (t) and I, (t) by (12) and conclude that Iy, (t) = /z,1},,(t), and so

meas Iy, (t) = /T, meas I}, (t), E=1,2, n>1, 0<t<T.
The harmonic measure is invariant under conformal transformations. This gives that

M (
My (

) w2(f71(i7xin)771[0a %HLH\V(ﬁ)) w2(i,Iin(t),H)

t
Tn’ __ —
t
Tn

) T Wl ) el0, L ENA(L)) | wlis B, (1), H)

For k = 1,2, n > 1, the harmonic measure w(i; I}, (¢), H) of I;, (t) at ¢ with respect to H equals the
angle divided over m under which the segment I; (t) is seen from the point 4. Similarly, the harmonic
measure w(i; I, (t),H) of Ix,(t) at i with respect to H equals the angle divided over = under which the
segment I, (t) is seen from the point ¢. This shows that the last term in the chain of equalities has a
limit as n — oo and

w?(i, I, (t), H) . tan?(rw(i, I7,,(t), H)) . meas® I7, (t) i meas? Iy, (t)

lim Y\t ~ 1 - .
oo w(i, I, (£),H)  n—oo tan(nw(i, Iy (), H))  n-oo measly, ()  n-oo measlan(t)
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This limit exists for every sequence {x,} tending to infinity. So there exists a limit for the ratio of

M2 (t) and My(t) as t — +0, and

ME(t)

meas? 1 (t)
im
t——+0 Mz (t)

ML)
= lim Ll — Jim —— 2 im
n—oo Mp(L) t—=+0 measla(t) t—+0 [a(t) — Ao(t)

(Bivt+ (Cy — ANV +...)2
(By — Co) V2 + ...

_ B B
By —Cy =24,

= 11m
t——40

This leads to the conclusion desired in Theorem 2 and completes the proof.

(Xo(t) = Bu(t))? _

2.

D. V. Prokhorov has been supported by the RF Ministry of Education and Science (project
no. 1.1520.2014K). D. V. Ukrainskii has been supported by the Russian/Turkish grant RFBR/TUBITAk

no. 14-01-91370.

References

1. Lowner K. Untersuchungen {iber
konforme Abbildungen des Einheitskreises. I.
Math. Ann., 1923, vol. 89, no. 1-2, pp. 103-121.

schlichte 7. Radé T. Sur la représentations conforme de
domaines variables. Acta Sci. Math. (Szeged),
1922-1923, vol. 1, no. 3, pp. 180-186.

2. Lind J., Marshall D. E., Rohde S. Collisions and

spirals of Loewner traces. Duke Math. J., 2010, 8. Goluzin G. M. Geometric Theory of Functions of
vol. 154, no. 3, pp. 527-573. Complex Variables. Moscow, Nauka, 1966.

3. Hayman W. K., Kennedy P. B. Subharmonic 9. Markushevich A. I. Sur la représentations
Functions, vol. 1, London, New York, Academic conforme des domaines a frontieres variables. Rec.
Press, 1976. , o Math. [Mat. Sbornik] N.S., 1936, vol. 1(43), no. 6,

4. Earle C. J., Epstein A. L. Quasiconformal variation 863-886
of slit domains. Proc. Amer. Math. Soc., 200l, Pp. 653=0S0.

10. Prokhorov D., Vasil'ev A. Singular and tangent

vol. 129, no. 11, pp. 3363-3372.

5. Prokhorov D., Zakharov A. Harmonic measures
of sides of a slit perpendicular to the domain
boundary. J. Math. Anal. Appl., 2012, vol. 394,
no. 2, pp. 738-743.

6. Kager W., Nienhuis B., Kadanoff L. P. Exact
solutions for Loewner evolutions, J. Statist. Phys.,
2004, vol. 115, no. 3-4, pp. 805-822.

11.

slit solutions to the Lowner equation. Analysis
and Mathematical Physics, eds. D. Gustafsson,
A. Vasil'ev. Berlin, Birkhauser, 2009, pp. 455-463.

Ivanov G., Prokhorov D., Vasil’ev A. Non-slit and
singular solutions to the Lowner equation. Bull.
Sci. Mathem., 2012, vol. 136, no. 3, pp. 328-341.

YK 517.54

AcumnToTMYECcKOe OTHOLIEHME rapMOHMYEeCKNX Mep CTOPOH pa3pesa
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Cratbs nocBsieHa reoMeTpum peLleHni XopAoBoro ypaBHeHns J1eBHepa, OCHOBAHHON Ha CPaBHEHWUM CUHIYNSPHBLIX PELIEHMIA 1

rapMOHMYECKMX Mep BEperoB paspesa B BEPXHEil MONynnockocTy, MOPOXAEHHOTO yrpaBAstoleii (oyHKLUMei. HaiiaeHo acumntoTi-
4ecKoe OTHOLIEHME rapMoHN4eckux Mep GeperoB paspesa, KacatenbHOro K NPsIMOiA NOJ 3aaHHbIM YroM, 1 pa3pesa, UMEIoLEro

BbICOKII NOPSLOK KacaHmst K Byre OKpyXHOCTI, Kacaroweiics LelicTBUTENBHON OCH.

Kntoyesbie cosa: ypasHeHue JleBHepa, CUHIYNsipHOE pelleHne, rapMoHuYeckast Mepa, eMKoCTb B NONYMNOCKOCTH.

M. B. Ipoxopos noayuusr noddepxucky Munucmepcmsa obpasosanus u wayku PP (npoexm Ne 1.1520.2014K).

J. B. ¥Ykpaunckuti noddepacar poccuiicko-mypeyxum eparmom PODOH/TIOBHTAK Ne 14-01-91370.
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MpeLcTaBneHs! HOBbIE UHTErPaNbHbIE TOXAECTBA s MOAVCPULMPOBAHHBIX (OYHKLMIA Beccenst npon3BonbHOr0 KOMMNEKCHOro
nopsiaka. MayyeHsl CBoiiCTBa MHTErpasbHbIX MpeobpasoBaHii Jlebenesa — Ckanbckoi.

KntoyeBble cnosa: MoaMULMPOBaHHbIE CPYHKLMI Beccenst KOMMNEeKCHOro nopsiaka, NHTerpanbHble NpeodpasosaHist KoHTopo-
Buya - JlebeneBa, nHTerpanbHbie npeobpasosarus Nlebenesa — CKanbeKoil.

1. HEKOTOPBIE CBOMCTBA ®YHKUUN Re K, 1 i5(z) U Tm K, i5()

MoxeM 3amucaTh BelECTBEHHYIO H MHHMYIO 4acTb MOAM(HUMPOBAHHBIX (QYyHKLUHH Deccens xommiekc-
HOTO HOpHH,Ka B BUE
Koyip(r) + Ko—ip(z)

Re Koyig(x) = 5 u Im Kq1ip(z) =

Kovig(z) — Ko—ip(z)
2 ’

rae K, () — momuduunpoBaHHas GyHKUHUs Deccessi Broporo pona (Takxke HasbiBaemasi GpyHKUHe# Mak-
JIOHAJIbA).
Dyukunu Kig(z), Re Kotig(x) 1 Im K1 ,3(x) uMeloT uHTerpajbHble npeacTasaeHus [1,2]

Kig(x) :/ e~ Teoshl cos(Bt) dt,
0
Re Kqyip(x) :/ e~ Tcosht cosh(at) cos(Bt) dt, (1)
0
Im Kpyip(z) = / e~ Teosht ginh(at) sin(3t) dt. (2)
0

U3z (1), (2) crenyet, uto Bo3MoxKHO mepenucath Re K,4,3(x) B BUie KocHHYC-TIpeoOpasoBaHus Pypbe

Re Koyig(x) = (g>1/2 Folem® M cosh(at);t — f] 3)
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