

### **МАТЕМАТИКА**

УДК 517.51

# $\Lambda$ -СУММИРУЕМОСТЬ И МУЛЬТИПЛИКАТОРЫ КЛАССОВ ГЁЛЬДЕРА РЯДОВ ФУРЬЕ ПО СИСТЕМАМ ХАРАКТЕРОВ

#### Н.Ю. Агафонова

Саратовский государственный университет,

кафедра теории вероятностей, математической статистики и управления стохастическими процессами

E-mail: AgafonovaNU@info.sgu.ru

Пусть G — группа Виленкина ограниченного типа. В данной работе получены необходимые и достаточные условия равномерной  $\Lambda$ -суммируемости всех рядов Фурье  $f \in C(G)$  и критерий  $\Lambda$ -суммируемости в  $L^1(G)$  всех рядов Фурье  $f \in L^1(G)$ . Также получено обобщение некоторых результатов Т. Квека и Л. Япа на случай общего модуля непрерывности.

**Ключевые слова:** равномерная  $\Lambda$ -суммируемость,  $\Lambda$ -суммируемость в  $L^1(G)$ , ряд Фурье, равномерная сходимость, мультипликаторы.

 $\Lambda\textsc{-Summability}$  and Multiplicators of Hölder Classes of Fourierseries with Respect to Character Systems

#### N.Yu. Agafonova

Saratov State University,

Chair of Theory of Probability, Mathematical Statistics and Manage Stochastics Processes E-mail: AgafonovaNU@info.sgu.ru

Let G be a Vilenkin group of bounded type. We obtain nessesary and sufficient conditions of uniform  $\Lambda$ -summability for all Fourier series of  $f \in C(G)$  and one of  $\Lambda$ -summability in  $L^1(G)$  for all Fourier series of  $f \in L^1(G)$ . Also we extend some T. Quek and L. Yap results to the case of general modulus of continuity.

**Key words:** uniform  $\Lambda$ -summability,  $\Lambda$ -summability in  $L^1(G)$ , Fourier – Vilenkin series, uniform convergence, multipliers.

Пусть  $\mathbf{P} = \{p_i\}_{i=1}^{\infty}$  — последовательность натуральных чисел, такая что  $2 \leqslant p_i \leqslant N, \ i \in \mathbb{N}$ . Пусть группа  $G(\mathbf{P})$  состоит из элементов  $\widetilde{x} = (x_1, x_2, \ldots)$ , где  $x_i \in \mathbb{Z}(p_i) = \{0, 1, 2, \ldots, p_i - 1\}, \ i \in \mathbb{N}$ , и снабжена операцией  $\widetilde{x} \oplus \widetilde{y} = \widetilde{z}$ , где  $\widetilde{z} = (z_1, z_2, \ldots) \in G(\mathbf{P})$  и  $z_i = x_i + y_i$  (mod  $p_i$ ),  $i \in \mathbb{N}$ . Аналогично вводится  $\widetilde{x} \ominus \widetilde{y}$ . Пусть  $m_0 = 1, m_i = p_{1i}$ , при  $i \in \mathbb{N}$ . Тогда каждое  $k \in \mathbb{Z}_+$  единственным образом представимо в виде

$$k = \sum_{i=1}^{\infty} k_i m_{i-1}, \ k_i \in \mathbb{Z}(p_i).$$
 (1)

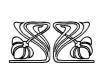
По  $k \in \mathbb{Z}_+$  вида (1) и  $\widetilde{x} \in G(\mathbf{P})$  определим

$$\widetilde{\chi}_k(\widetilde{x}) = \exp\left(2\pi i \left(\sum_{j=1}^{\infty} \frac{x_j k_j}{p_j}\right)\right).$$

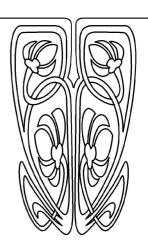
Система  $\{\widetilde{\chi}_k(\widetilde{x})\}_{k=0}^\infty$  является ортонормированной и полной относительно меры Хаара на  $G(\mathbf{P})[1,$  гл. 3, §2] (последняя обозначается через  $d\widetilde{x}$  и однозначно определяется равенством  $m(G)=\int\limits_C 1d\,\widetilde{x}=1$ ).







## НАУЧНЫЙ ОТДЕЛ



© Агафонова Н.Ю., 2011



Будем рассматривать пространство S(G) борелевских мер на G, пространство C(G) непрерывных функций на G и пространство B(G) ограниченных измеримых функций на G с нормой  $\|f\|_{\infty} = \sup_{\widetilde{x} \in G} |f(\widetilde{x})|$ , а также пространства  $L^p(G)$  интегрируемых в p-й степени на G функций с нормой

$$||f||_p = \left(\int\limits_C |f(\widetilde{x})|^p d\widetilde{x}\right)^{1/p}, \qquad 1 \leqslant p < \infty.$$

Известно [2, гл.6, §7], что каждый линейный непрерывный функционал на C(K), где K — компакт, имеет вид  $F(f) = \int\limits_K f d\,\mu$ , где  $\mu$  — борелевская мера на K. Поэтому в пространстве S(G) введем норму

$$\|\mu\|_{M} = \sup \Big\{ \Big| \int_{C} f d\mu \Big| : f \in C(G), \|f\|_{\infty} \leqslant 1 \Big\}.$$

Для  $f \in L^1(G)$  или  $\mu \in S(G)$  можно определить коэффициенты Фурье формулами:

$$\hat{f}(n) = \int_{G} f(\widetilde{x}) \overline{\widetilde{\chi}_{n}(\widetilde{x})} d\widetilde{x}, \qquad \hat{\mu}(n) = \int_{G} \overline{\widetilde{\chi}_{n}(\widetilde{x})} d\mu(\widetilde{x}), \qquad n \in \mathbb{Z}_{+}.$$

Частная сумма ряда  $\Phi$ урье функции f определяется равенством

$$S_n(f)(\widetilde{x}) = \sum_{k=0}^{n-1} \hat{f}(k)\widetilde{\chi}_n(\widetilde{x}), \qquad n \in \mathbb{N},$$

аналогично частная сумма определяется для  $\mu$ . Для свёрток  $h_1(\widetilde{x})=f*g(\widetilde{x})=\int\limits_G f(\widetilde{x}\ominus\widetilde{t})g(\widetilde{t})d\widetilde{t}$  и  $h_2(\widetilde{x})=f*\mu(\widetilde{x})=\int\limits_G f(\widetilde{x}\ominus\widetilde{t})d\mu(\widetilde{t})$ , где  $f,g\in L^1(G)$  справедливы равенства  $\hat{h}_1(\widetilde{u})=\hat{f}(\widetilde{u})\hat{g}(\widetilde{u}),\,\hat{h}_2(\widetilde{u})=f(\widetilde{u})\hat{\mu}(\widetilde{u})$ . При этом, если  $f\in L^p(G),\,1\leqslant p<\infty$ , то  $f*g\in L^p(G)$  и  $f*\mu\in L^p(G)$  [3, гл. 1, § 1.3].

Пусть  $G_k = \{\widetilde{x} \in G : x_1 = x_2 = \ldots = x_k = 0\}$ . Тогда для  $f \in L^p(G)$ ,  $1 \leqslant p < \infty$ , или  $f \in C(G)$  (при  $p = \infty$ ) вводится дискретный модуль непрерывности:

$$\omega_k(f)_p = \sup\{\|f(\widetilde{x} \ominus \widetilde{h}) - f(\widetilde{x})\|_p : \widetilde{h} \in G_k\}, \qquad k \in \mathbb{Z}_+,$$

и пространство  $H_p^\omega(G)=\{f\in L^p(G):\omega_k(f)_p\leqslant C\omega_k,\ k\in\mathbb{Z}_+\}$ , где последовательность  $\omega=\{\omega_k\}_{k=0}^\infty$  положительна и убывает к нулю, а C зависит от f, но не от k.

Последовательность  $\omega = \{\omega_k\}_{k=0}^\infty$  принадлежит классу Бари B, если для всех  $n \in \mathbb{Z}_+$  имеет место соотношение  $\sum\limits_{k=n}^\infty \omega_k = O(\omega_n)$ . Далее будут использоваться ядра Дирихле  $\widetilde{D}_n(\widetilde{x}) = \sum\limits_{k=0}^{n-1} \widetilde{\chi}_k(\widetilde{x})$  и пространство  $UC(G) = \{f \in C(G): \lim_{n \to \infty} \|f - S_n(f)\|_\infty = 0\}$ . Пусть A, B — два класса функций, заданных на G. Будем писать  $\{\lambda_k\}_{k=0}^\infty \in (A, B)$ , если из того,

Пусть A, B — два класса функций, заданных на G. Будем писать  $\{\lambda_k\}_{k=0}^{\infty} \in (A, B)$ , если из того, что ряд  $\sum\limits_{k=0}^{\infty} a_k \widetilde{\chi}_k(\widetilde{x})$  есть ряд Фурье (по системе  $\{\widetilde{\chi}_k(\widetilde{x}\}_{k=0}^{\infty})$  функции или меры из A следует, что ряд  $\sum\limits_{k=0}^{\infty} \lambda_k a_k \widetilde{\chi}_k(\widetilde{x})$  является рядом Фурье функции или меры из B.

Пусть  $\{\lambda_{kn}\}_{k,n=0}^{\infty}$  — бесконечная матрица. Если для каждого  $n \in \mathbb{Z}_+$  ряд  $\sum\limits_{k=0}^{\infty} \lambda_{kn} \hat{f}(k) \widetilde{\chi}_k(\widetilde{x})$  сходится равномерно к функции  $g_n(f)(\widetilde{x})$ , а последовательность  $\{g_n(f)(\widetilde{x})\}_{n=0}^{\infty}$ , в свою очередь, сходится равномерно к функции  $g(f)(\widetilde{x})$ , то будем говорить, что ряд Фурье функции  $f(\widetilde{x})$  равномерно  $\Lambda$ -суммируем к  $g(f)(\widetilde{x})$ . Если же для каждого  $n \in \mathbb{Z}_+$  ряд  $\sum\limits_{k=0}^{\infty} \lambda_k \hat{f}(k) \widetilde{\chi}_k(\widetilde{x})$  сходится равномерно к функции  $g_n(f)(\widetilde{x})$ , а последовательность  $\{g_n(f)(\widetilde{x})\}_{n=0}^{\infty}$  сходится в  $L^1(G)$  к функции  $g(f)(\widetilde{x})$ , то ряд Фурье функции  $f(\widetilde{x})$   $\Lambda$ -суммируем в  $L^1(G)$  к функции  $g(f)(\widetilde{x})$ .

В данной работе получены критерии равномерной  $\Lambda$ -суммируемости для всех  $f \in C(G)$  и  $\Lambda$ -суммируемости в  $L^1(G)$  для всех  $f \in L^1(G)$ . В тригонометрическом случае такие критерии принадлежат

4 Научный отдел



соответственно Й. Карамате, М. Томичу [4] и Ф.И. Харшиладзе [5]. Некоторые близкие результаты для мультипликативных систем на [0,1) представлены в работе [6]. Кроме того, даны критерии принадлежности последовательности  $\{\lambda_k\}_{k=0}^\infty$  классам  $(H_p^\omega, H_\infty^\omega)$  и  $(H_1^\delta, H_p^\omega)$ . В случае  $\delta_n = m_n^{-\alpha}$ ,  $\omega_n=m_n^{-\beta}$  подобные результаты можно найти в работе  $\tilde{[7]}$ .

**Лемма 1** [8, §1.5 и §10.5].  $\widetilde{D}_{m_n}(\widetilde{x}) = m_n$  при  $\widetilde{x} \in G_n$  и  $\widetilde{D}_{m_n}(\widetilde{x}) = 0$  при  $\widetilde{x} \in G \setminus G_n$ ,  $n \in \mathbb{Z}_+$ . Для  $f \in L^p(G)$  или  $f \in C(G)$  (при  $p = \infty$ ) справедливо неравенство А.В. Ефимова

$$\frac{1}{2}\omega_n(f)_p \leqslant \|f - S_{m_n}(f)\|_p \leqslant \omega_n(f)_p.$$

**Лемма 2** [9]. Пусть для  $\Lambda=\{\lambda_n\}_{n=0}^\infty$  по определению  $\Lambda_n:=\sum_{k=0}^{n-1}\lambda_k\widetilde{\chi}_k,\ n\in\mathbb{N}$ . Тогда

- 1) включение  $\{\lambda_k\}_{k=0}^{\infty} \in (C,UC)$  равносильно ограниченности  $\|\Lambda_n\|_1$ ; 2) включение  $\{\lambda_k\}_{k=0}^{\infty} \in (L^1,UC)$  равносильно ограниченности  $\|\Lambda_n\|_{\infty}$ .

**Лемма 3** [10]. 1) ряд  $\sum\limits_{k=0}^{\infty}a_{k}\widetilde{\chi}_{k}$  является рядом Фурье  $\mu\in S(G)$  тогда и только тогда, когда

$$\|S_{m_n}\|_1:=\Bigl\|\sum\limits_{k=0}^{m_n-1}a_k\widetilde{\chi}_k\Bigr\|_1$$
 ограничены;

(2) ряд  $\sum^{\infty}a_k\widetilde{\chi}_k$  является рядом Фурье функции  $f\in B(G)$  тогда и только тогда, когда  $\|S_{m_n}\|_{\infty}:=\left\|\sum\limits_{k=0}^{m_n-1}a_k\widetilde{\chi}_k\right\|_{\infty}$  ограничены.

**Теорема 1.** Для того чтобы ряды Фурье всех функций  $f \in C(G)$  были равномерно  $\Lambda$ -суммируемы, необходимо и достаточно выполнение следующих условий:

- 1) предел  $\lim_{k \to \infty} \lambda_{kn}$  существует для всех  $k \in \mathbb{Z}_+$ ;
- 2) при каждом  $n\in\mathbb{Z}_+$  нормы  $\|\Lambda_{in}\|_1:=\Big\|\sum\limits_{i=0}^{i-1}\lambda_{jn}\widetilde{\chi}_j(\widetilde{x})\Big\|_1$  ограничены  $M_n$ , где  $M_n$  не зависит om i;
- 3) существуют борелевские меры  $\mu_n\in S(G)$ ,  $n\in\mathbb{Z}_+$ , такие, что  $\hat{\mu}_n(i)=\lambda_{in}$  для всех  $i,n\in\mathbb{Z}_+$  $u \|\mu_n\|_M = O(1).$

**Доказательство.** *Необходимость*. Пусть ряды Фурье всех функций  $f \in C(G)$  равномерно  $\Lambda$ -суммируемы. В частности, ряды  $\sum\limits_{k=0}^{\infty}\lambda_{kn}\hat{f}(k)\widetilde{\chi}_{k}(\widetilde{x})$  при каждом  $n\in\mathbb{Z}_{+}$  сходятся равномерно к  $g_{n}(f)$ . Следовательно, по лемме 2 имеет место условие 2). Отсюда по лемме 3 получаем существование мер  $\mu_n$ ,  $n \in \mathbb{Z}_+$ , для которых  $\hat{\mu}_n(i) = \lambda_{in}$  при  $i \in \mathbb{Z}_+$ . Так как  $(f * \mu_n)(i) = \hat{f}(i)\hat{\mu}_n(i)$  при всех  $i \in \mathbb{Z}_+$ , то по теореме единственности  $g_n(f) = f * \mu_n$ .

Рассмотрим функционалы

$$l_n(f) = f * \mu_n(\widetilde{0}) = \int_{\widetilde{C}} f(\widetilde{0} \ominus \widetilde{t}) d\mu(\widetilde{t}).$$

Так как  $\lim_{k \to \infty} ||S_{m_k}(f) - f||_{\infty} = 0$ , то

$$\int_{\Omega} f(\widetilde{0} \ominus \widetilde{t}) d\mu(\widetilde{t}) = \lim_{k \to \infty} \sum_{i=0}^{m_k - 1} \lambda_{in} \hat{f}(i) = \sum_{i=0}^{\infty} \lambda_{in} \hat{f}(i).$$

Последний ряд по условию сходится к  $g_n(f)(0)$ . Также по условию  $\{l_n(f)\}_{n=0}^\infty = \{g_n(0)\}_{n=0}^\infty$  сходится к g(f)(0) для всех  $f\in C(G)$ . По теореме Банаха – Штейнгауза получаем, что  $\|\mu_n\|_M=O(1)$ . Наконец,  $l_n(\widetilde{\chi}_i) = \lambda_{in}$  тоже сходятся по условию, откуда вытекает 1).

 $\mathcal{A}$ остаточность. Пусть выполнены условия 1)—3). По лемме 2 для любой  $f\in C(G)$  ряд  $\sum\limits_{j=0}^\infty \lambda_{jn} \hat{f}(j)\widetilde{\chi}_j(\widetilde{x})$  сходится равномерно к некоторой  $g_n(f)\in C(G)$ . Поэтому ряд  $l_n(f)=\sum\limits_{i=0}^\infty \lambda_{in} \hat{f}(i)$ сходится при всех  $f \in C(G)$  и  $n \in \mathbb{Z}_+$ . Но

$$l_n(f) = \lim_{i \to \infty} \int\limits_G \Lambda_{in}(\widetilde{t}) f(\widetilde{0} \ominus \widetilde{t}) \, d\mu(\widetilde{t}), \qquad \left| \int\limits_G \Lambda_{in}(\widetilde{t}) f(\widetilde{0} \ominus \widetilde{t}) \, d\mu(\widetilde{t}) \right| \leqslant \|\Lambda_{in}\|_1 \cdot \|f\|_\infty \leqslant M_n \|f\|_\infty.$$

5 Математика



Поэтому  $l_n(f)$  есть ограниченный функционал и  $l_n(f) = f * \mu_n(0)$ . В самом деле, для полиномов по системе  $\{\widetilde{\chi}_k\}_{k=0}^\infty$  последнее равенство верно и, учитывая их плотность в C(G), получим, что  $l_n(f) = f * \mu_n(0)$  для всех  $f \in C(G)$ . Далее, в силу 1) последовательность  $\{l_n(f)\}_{n=0}^\infty$  сходится для всех f — полиномов по системе  $\{\widetilde{\chi}_k\}_{k=0}^\infty$ , а благодаря условию 3) нормы  $\|l_n\|$  ограничены. По теореме 3 [11, гл. 7, §1] функционалы  $l_n(f)$  сходятся для всех  $f \in C(G)$ .

Пусть  $T_{\widetilde{a}}f(\widetilde{t})=f(\widetilde{t}\ominus\widetilde{a})$ , тогда  $l_n(T_{\widetilde{a}}f)=:g_n(\widetilde{a})$ . Так как  $\|T_{\widetilde{a}}f-f\|_\infty\to 0$  при  $\widetilde{a}\to 0$ , то для любого  $\varepsilon>0$  найдется  $k\in\mathbb{N}$ , такое что для всех  $\widetilde{h}\in G_k$  верно  $\|T_{\widetilde{h}}f-f\|_\infty<\varepsilon$ . Группа G является объединением различных смежных классов  $\widetilde{a}_i\oplus G_k$ ,  $i=0,1,\ldots,m_k-1$ .

Пусть  $\widetilde{a} \in \widetilde{a}_i \oplus G_k$ , т. е.  $\widetilde{a} \ominus \widetilde{a}_i \in G_k$ . Тогда имеем

$$|l_n(T_{\tilde{a}}f) - l_m(T_{\tilde{a}}f)| \leq |l_n(T_{\tilde{a}}f) - l_n(T_{\tilde{a}}f)| + |l_n(T_{\tilde{a}}f) - l_m(T_{\tilde{a}}f)| + |l_m(T_{\tilde{a}}f) - l_m(T_{\tilde{a}}f)| + |l_m(T_{\tilde{a}}f)| +$$

Так как  $\|l_n\| = \|\mu_n\|_M \leqslant M$ , то  $I_1 + I_3 \leqslant 2M\|T_{\tilde{a}_i}f - T_{\tilde{a}}f\| < 2M\varepsilon$ . Если k фиксировано, то, поскольку  $l_n(T_{\tilde{a}}f)$  сходятся при любом  $\tilde{a} \in G$  и  $f \in C(G)$ , получаем: найдётся  $n_0(\varepsilon)$ , такое что для всех  $n,m>n_0$  и всех  $i=0,1,\ldots,m_k-1$  имеем  $|l_n(T_{\tilde{a}_i}f)-l_m(T_{\tilde{a}_i}f)|<\varepsilon$ . В итоге при  $n,m>n_0$  имеем  $|g_n(\tilde{a})-g_m(\tilde{a})|<(2M+1)\varepsilon$  для всех  $\tilde{a} \in G_k$ . Отсюда вытекает равномерная сходимость  $g_n$ . Теорема доказана.

**Теорема 2.** Для того, чтобы ряды Фурье всех функций  $f \in L^1(G)$  были  $\Lambda$ -суммируемы в  $L^1(G)$  к f, необходимо и достаточно выполнение следующих условий:

- 1) для всех  $k \in \mathbb{Z}_+$  верно  $\lim_{n \to \infty} \lambda_{kn} = 1$ ;
- 2) при каждом  $n \in \mathbb{Z}_+$  нормы  $\|\Lambda_{in}\|_{\infty} := \left\|\sum_{j=0}^{i-1} \lambda_{jn} \widetilde{\chi}_j(\widetilde{x})\right\|_{\infty} \leqslant M_n$ , где  $M_n$  не зависит от i;
- 3) существуют  $K_n \in B(G)$ ,  $n \in \mathbb{Z}_+$ , такие что  $\hat{K}_n(i) = \lambda_{in}$  для всех  $i \in \mathbb{Z}_+$  и нормы  $\|K_n\|_1$  ограничены.

**Доказательство.** *Необходимость*. По условию ряды  $\sum\limits_{i=0}^{\infty}\lambda_{in}\hat{f}(i)\widetilde{\chi}_{i}$  сходятся равномерно к функции  $g_{n}(f)\in C(G)$  и по лемме 2 условие 2) выполнено, откуда по лемме 3 следует существование  $K_{n}\in B(G)$  со свойством  $\hat{K}_{n}(i)=\lambda_{in},\ i\in\mathbb{Z}_{+}.$ 

Так как  $(f*K_n)(i) = \hat{f}(i)\hat{K}_n(i)$ , то  $g_n(f) = f*K_n$ . Далее, по условию  $g_n(\widetilde{\chi}_i) = \widetilde{\chi}_i *K_n = \lambda_{in}\widetilde{\chi}_i$  сходятся к  $\widetilde{\chi}_i$  в  $L^1(G)$  при  $n \to \infty$ , откуда вытекает условие 1). Аналогично из того, что  $\lim_{n \to \infty} \|g_n(f) - f\|_1 = 0$  для любой  $f \in L^1(G)$  по теореме Банаха – Штейнгауза следует, что  $\|g_n\|_{L^1 \to L^1} = \|K_n\|_1$  ограничены, т. е. 3) имеет место.

 $\mathcal{A}$ остаточность. Пусть выполнены условия 1)–3) и  $f\in L^1(G)$ . Тогда по лемме 2 ряд  $\sum\limits_{i=0}^\infty \lambda_{in} \hat{f}(i) \widetilde{\chi}_i$  сходится равномерно к некоторой функции  $g_n(f)\in C(G)$ . Ясно, что  $g_n(f)=f*K_n$ . Из условия 1) следует, что  $g_n(\widetilde{\chi}_i)=K_n*\widetilde{\chi}_i=\lambda_{in}\widetilde{\chi}_i$  сходятся к  $\widetilde{\chi}_i$  в  $L^1(G)$  и то же верно для любого полинома по системе  $\{\widetilde{\chi}_i\}_{i=0}^\infty$ . Поскольку  $\|g_n\|_{L^1\to L^1}=\|K_n\|_1\leqslant M$ , то по теореме 3 [11, гл. 7, §1] получаем, что  $g_n(f)$  сходятся к f в  $L^1(G)$ . Теорема доказана.

В оставшейся части работы полагаем, что  $\omega=\{\omega_k\}_{k=0}^\infty$  и  $\delta=\{\delta_k\}_{k=0}^\infty$  — убывающие к нулю положительные последовательности, такие что  $\gamma=\{\gamma_k\}_{k=0}^\infty$ , где  $\gamma_k=\omega_k/\delta_k$ , тоже убывает к нулю. Далее, пусть 1/p+1/q=1, т. е. при p=1 верно  $q=\infty$ , и наоборот.

**Лемма 4.** Пусть последовательности  $\omega$  и  $\delta$  положительны и убывают  $\kappa$  нулю. Если последовательность  $\gamma$  тоже убывает  $\kappa$  нулю и  $\omega \in B$ , то  $\gamma \in B$ .

Доказательство. По условию

$$\sum_{k=n}^{\infty} \gamma_k = \sum_{k=n}^{\infty} \frac{\omega_k}{\delta_k} \leqslant \sum_{k=n}^{\infty} \frac{\omega_k}{\delta_n} \leqslant C_1 \frac{\omega_n}{\delta_n} = C_1 \gamma_n,$$

так как  $\omega \in B$ . Лемма доказана.

**Теорема 3.** Пусть  $1\leqslant p\leqslant \infty$ ,  $\omega\in B$ . Тогда последовательность  $\{\lambda_k\}_{k=0}^\infty$  принадлежит классу  $(H_p^\delta,H_\infty^\omega)$  тогда и только тогда, когда ряд  $\sum\limits_{k=0}^\infty \lambda_k\widetilde{\chi}_k$  является рядом Фурье функции  $f\in H_q^\gamma.$ 

б Научный отдел



**Доказательство.** Для  $f \in L^p(G)$ ,  $g \in L^q(G)$  справедливо неравенство

$$||f * g||_{\infty} \leq ||f||_{p} \cdot ||g||_{q},$$

причем  $f*g\in C(G)$ . Используя равенство

$$f * g * D_{m_{n+1}} - f * g * D_{m_n} = (f * D_{m_{n+1}} - f * D_{m_n}) * (g * D_{m_{n+1}} - g * D_{m_n}),$$

для  $f\in H_{p}^{\delta},\,g\in H_{q}^{\gamma}$  получаем в силу леммы 1

$$||S_{m_{n+1}}(f * g) - S_{m_n}(f * g)||_{\infty} \leq ||S_{m_{n+1}}(f) - S_{m_n}(f)||_p \cdot ||S_{m_{n+1}}(g) - S_{m_n}(g)||_q \leq$$
$$\leq 2\omega_n(f)_p \cdot 2\omega_n(g)_q \leq C_1\delta_n\gamma_n = C_1\omega_n.$$

Используя условие  $\omega \in B$ , находим, что

$$||f * g - S_{m_n}(f * g)||_{\infty} \le \sum_{k=n}^{\infty} ||S_{m_{k+1}}(f * g) - S_{m_k}(f * g)||_{\infty} \le C_1 \sum_{k=n}^{\infty} \omega_k \le C_2 \omega_n,$$

откуда по лемме 1  $f*g\in H_\infty^\omega$ . Пусть теперь  $\{\lambda_k\}_{k=0}^\infty\in (H_p^\delta,H_\infty^\omega)$ . Сопоставим  $\{\lambda_k\}_{k=0}^\infty$  оператор  $T_\lambda$ , отображающий  $f\in H_p^\delta$ в  $f_\lambda\in H^\omega_\infty$  с рядом Фурье  $\sum_{k=0}^\infty \lambda_k \widehat{f}(k)\widetilde{\chi}_k$  . Легко видеть, что  $T_\lambda(f*h)=T_\lambda f*h$  при  $f\in H^\delta_p,\,h\in L^1(G)$ . Известно, что относительно нормы

$$||f||_{p,\delta} = ||f||_p + \sup_{k \in \mathbb{Z}_+} \omega_k(f)_p / \delta_k$$

пространство  $H_p^\delta$  является банаховым. Из того, что  $T_\lambda$  действует из  $H_p^\delta$  в  $H_\infty^\omega$  следует, что он ограничен [12, гл. 6, лемма 6.5.2]. Значит, для любой  $f\in H_p^\delta$  имеем по лемме 1

$$||f * T_{\lambda} D_{m_{n+1}} - f * T_{\lambda} D_{m_n}||_{\infty} = ||T_{\lambda} f * D_{m_{n+1}} - T_{\lambda} f * D_{m_n}||_{\infty} \leqslant 2\omega_n (T_{\lambda} f)_{\infty} \leqslant$$

$$\leqslant 2\omega_n ||T_{\lambda} f||_{H_{\omega},\infty} \leqslant 2\omega_n ||T_{\lambda}||_{H_p^{\delta} \to H_{\omega}^{\infty}} \cdot ||f||_{p,\delta} = C_3(\lambda)\omega_n \Big( ||f||_p + \sup_{k \in \mathbb{Z}_+} \omega_k(f)_p / \delta_k \Big). \tag{2}$$

Рассмотрим  $T_{\lambda}D_{m_n}=\sum_{k=0}^{m_n-1}\lambda_k\widetilde{\chi}_k=\Lambda_{m_n}.$  Пусть  $\mathcal{P}_{m_n}=\{f\in L^1(G):\hat{f}(i)=0$  при  $i\geqslant m_n\}$ , а  $\mathcal{P}=igcup_{m_n}^\infty \mathcal{P}_{m_n}$ . Тогда в силу плотности  $\mathcal{P}$  в  $L^p(G),\, 1\leqslant p<\infty$ , и в C(G) находим, что

$$\|\Lambda_{m_n} - \Lambda_{m_{n+1}}\|_q = \sup \left\{ \left| \int_G (\Lambda_{m_{n+1}} - \Lambda_{m_n})(\widetilde{x})h(\widetilde{0} \ominus \widetilde{x}) d\widetilde{x} \right| : h \in \mathcal{P}, \|h\|_p \leqslant 1 \right\} \leqslant$$

$$\leqslant \sup \left\{ \|(\Lambda_{m_{n+1}} - \Lambda_{m_n}) * h\|_{\infty} : h \in \mathcal{P}, \|h\|_p \leqslant 1 \right\} =$$

$$= \sup \left\{ \|(\Lambda_{m_{n+1}} - \Lambda_{m_n}) * h\|_{\infty} : h \in \mathcal{P}_{m_{n+1}}, \|h\|_p \leqslant 1 \right\}.$$

Применяя оценку (2) при  $f=h\in\mathcal{P}_{m_{n+1}}$  и используя постоянство h на смежных классах  $a\oplus G_{n+1}$ , получаем

$$\|\Lambda_{m_{n+1}} - \Lambda_{m_n}\|_q \leqslant C_3(\lambda)\omega_n \sup \left\{ \|h\|_p + \max_{0 \leqslant k \leqslant n} \omega_k(h)_p / \delta_k : h \in \mathcal{P}_{m_{n+1}}, \|h\|_p \leqslant 1 \right\} \leqslant$$

$$\leqslant C_3(\lambda)\omega_n (1 + 2/\delta_n) \leqslant C_4(\lambda, \delta)\omega_n / \delta_n = C_4 \gamma_n. \tag{3}$$

Благодаря лемме 4 и (3) при k > n имеем

$$\|\Lambda_{m_k} - \Lambda_{m_n}\|_q \leqslant C_5 \gamma_n,\tag{4}$$

7 Математика



т. е.  $\{\Lambda_{m_n}\}_{n=0}^{\infty}$  фундаментальна в  $L^q(G)$  и, как следствие,  $\Lambda_{m_n}$  сходятся в  $L^q(G)$  к некоторой функции g. При этом  $(\Lambda_{m_n})\hat{\ }(j)=\lambda_j$  при  $m_n>j$ , откуда следует, что  $\hat{g}(j)=\lambda_j$  и в силу теоремы единственности  $T_\lambda f=f*g$ . Переходя в (4) к пределу при  $k\to\infty$  получаем, что

$$||g - S_{m_n}(g)||_q = ||g - \Lambda_{m_n}||_q \leqslant C_5 \gamma_n,$$

откуда  $g \in H^\gamma_q$  и теорема доказана.

Получим двойственный результат.

**Теорема 4.** Пусть  $1\leqslant p\leqslant \infty$ ,  $\omega\in B$ . Тогда последовательность  $\{\lambda_k\}_{k=0}^\infty$  принадлежит  $(H_1^\delta,H_p^\omega)$  тогда и только тогда, когда ряд  $\sum\limits_{k=0}^\infty \lambda_k\widetilde{\chi}_k$  является рядом Фурье функции  $f\in H_q^\gamma$ .

**Доказательство.** Пусть  $f \in H_1^{\delta}$ ,  $g \in H_p^{\gamma}$ . Тогда аналогично доказательству теоремы 3 имеем:

$$||S_{m_n+1}(f*g) - S_{m_n}(f*g)||_p \leqslant ||S_{m_n+1}(f) - S_{m_n}(f)||_1 \cdot ||S_{m_n+1}(g) - S_{m_n}(g)||_p \leqslant C_1 \delta_n \gamma_n = C_1 \omega_n.$$

В силу условия  $\omega \in B$  получаем  $f * g \in H_p^\omega$ . Если же  $\{\lambda_k\}_{k=0}^\infty \in (H_1^\delta, H_p^\omega)$ , то снова рассмотрим оператор  $T_\lambda$ , который ограничен из  $H_1^\delta$  в  $H_p^\omega$ . Тогда в силу леммы 1

$$\sup_{n \in \mathbb{Z}_{+}} \|T_{\lambda} f * D_{m_{n}+1} - T_{\lambda} f * D_{m_{n}}\|_{p} \omega_{n}^{-1} \leqslant 2 \|T_{\lambda}\|_{H_{1}^{\delta} \to H_{p}^{\omega}} \Big( \|f\|_{1} + \sup_{k \in \mathbb{Z}_{+}} \omega_{k}(f)_{1} / \delta_{k} \Big). \tag{5}$$

В частности, в левую часть можно подставить  $\|f * T_{\lambda} D_{m_n+1} - f * T_{\lambda} D_{m_n}\|_p$ .

Пусть  $f\in D_{m_{N+1}}$ , n=N. Тогда  $T_\lambda D_{m_n}=\Lambda_{m_n}$ . Ранее было отмечено, что  $\omega_k(D_{m_{N+1}})_1=0$  при  $k\geqslant N+1$ . Поэтому из (5) следует, что

$$\omega_N^{-1} \|\Lambda_{m_{N+1}} - \Lambda_{m_N}\|_p \leqslant 2\|T_\lambda\| \Big( \|D_{m_{N+1}}\|_1 + \sup_{0 \leqslant k \leqslant N} \frac{\omega_k(D_{m_{N+1}})_1}{\delta_k} \Big),$$

откуда  $\|\Lambda_{m_{N+1}} - \Lambda_{m_N}\|_p \leqslant C_2 \omega_N (1 + 2/\delta_N) \leqslant C_3(\lambda, \delta) \gamma_N.$ 

Отсюда аналогично доказательству теоремы 3 с использованием леммы 4 получаем фундаментальность  $\{\Lambda_{m_n}\}_{n=0}^{\infty}$  в  $L^p(G)$ , сходимость  $\Lambda_{m_n}$ к g в  $L^p(G)$  и то, что  $g \in H_p^{\gamma}$ . Теорема доказана.

Aвтор выражает глубокую благодарность C.C. Волосивцу за внимание к работе и обсуждение результатов.

#### Библиографический список

- 1. Агаев Г.Н., Виленкин Н.Я., Джафарли Г.М., Рубинштейн А.И. Мультипликативные системы функций и гармонический анализ на нуль-мерных группах. Баку: ЭЛМ, 1981.
- 2. Данфорд Н., Шварц Дж. Т. Линейные операторы. Общая теория. М.: Изд-во иностр. лит., 1962.
- 3. *Rudin W.* Fourier analysis on groups. N.Y.: John Wiley and Sons, 1967.
- 4. *Karamata J., Tomich M.* Sur la sommation des series de Fourier des founctions continues // Publ. Inst. Math. 1955. Vol. 8. P. 123–138.
- 5. *Харшиладзе* Ф. И. О множителях равномерной сходимости и прямоугольных матрицах суммирования рядов Фурье // Труды Тбилисского госуниверситета. 1961. Т. 84. С. 127–141.
- 6. Агафонова Н. Ю. О равномерной сходимости преобразованных рядов Фурье по мультипликативным системам // Изв. Сарат. ун-та. Нов. сер. 2009. Т. 9. Сер. Математика. Механика. Информатика, вып. 1. С. 3–8. 7. Quek T.S., Yap L.Y.H. Multipliers from one Lipschitz

- space to another // J. Math. Anal. Appl. 1982. Vol. 86,  $N_2$  1. P. 69–73.
- 8. Голубов Б.И., Ефимов А.В., Скворцов В.А. Ряды и преобразования Уолша: Теория и применения. М.: Наука, 1987.
- 9. Волосивец С.С., Агафонова Н.Ю. О мультипликаторах равномерной сходимости рядов по мультипликативным системам // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам: межвуз. сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2005. Вып. 3. С. 3–23.
- 10. Агафонова Н.Ю. О мультипликаторах рядов борелевских мер // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам: межвуз. сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2007. Вып.4. С. 3–10.
- 11. *Канторович Л.В., Акилов Г.П.* Функциональный анализ. М.: Наука, 1977.
- 12. *Качмаж С., Штейнгауз Г.* Теория ортогональных рядов. М.: Физматгиз, 1958.

8 Научный отдел