

- 5. *Alidrisi M*. Optimal control of the service rate of an exponential queueing network using Markov decision theory // Intern. J. Syst. Sci. 1990. V. 21. P. 2553–2563.
- 6. Bruell S.C., Balbo G., Afshari P.V. Mean value analysis of mixed, multiple class BCMP networks with load dependent service stations // Performance Evaluation. 1984. V. 4. P. 241–260.
- 7. Mitra D., McKenna J. Asymptotic expansions for closed Markovian networks with state-dependent service rates // J. of the Association for Computing Machinery. 1986. V. 33, \mathbb{N}_2 3. P. 568–592.
- 8. *Ляхов А.И.* Асимптотический анализ замкнутых сетей очередей, включающих устройства с переменной

интенсивностью обслуживания // Автоматика и телемеханика. 1997. № 3. С. 131–143.

- 9. Mandelbaum A., Massey W.A., Reiman M.I. Strong approximations for Markovian service networks // Queueing Systems. 1998. V. 30. P. 149–201.
- 10. *Митрофанов Ю.И., Долгов В.И.* Динамическое управление интенсивностями обслуживания в сетях массового обслуживания // ABT. 2008. № 6. С. 44–56.
- 11. Баруча-Рид А.Т. Элементы теории марковских процессов и их приложения. М.: Наука, ГРФМЛ, 1969. 512 с.
- 12. Митрофанов Ю.И. Анализ сетей массового обслуживания. Саратов: Науч. книга, 2005. 175 с.

УДК 515.14

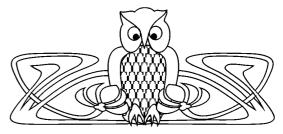
ПРЕПЯТСТВИЯ К ВЛОЖЕНИЮ РАССЛОЕНИЙ МАТРИЧНЫХ АЛГЕБР В ТРИВИАЛЬНОЕ РАССЛОЕНИЕ

А.В. Ершов

Саратовский государственный университет, кафедра геометрии E-mail: ershov.andrei@gmail.com

В работе изучаются топологические препятствия к вложению $M_k(\mathbb{C})$ -расслоения в тривиальное $M_{kl}(\mathbb{C})$ -расслоение при условии $(k,\,l)\,=\,1.$ Описана также связь рассматриваемой задачи с теорией расслоений со структурным группоидом.

Ключевые слова: расслоение, топологическое препятствие, характеристический класс, группоид.



Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One

A.V. Ershov

Saratov State University, Chair of Geometry

E-mail: ershov.andrei@gmail.com

Topological obstructions to embedding of an $M_k(\mathbb{C})$ -bundle into a trivial $M_{kl}(\mathbb{C})$ -bundle under the condition (k,l)=1 are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.

Key words: bundle, topological obstruction, characteristic class, groupoid.

1. КОГОМОЛОГИЧЕСКОЕ ОПИСАНИЕ ПРЕПЯТСТВИЙ

1.1. Постановка задачи. Пусть X — конечное клеточное пространство, $A_k \stackrel{\pi}{\to} X$ — локально тривиальное расслоение со слоем комплексная матричная алгебра $M_k(\mathbb{C})$ (таким образом, его «естественной» структурной группой является $\mathrm{Aut}(M_k(\mathbb{C}))\cong\mathrm{PGL}_k(\mathbb{C})$). Зафиксируем натуральное l, взаимно простое с k. Наша задача — описать топологические препятствия к существованию отображения расслоений над X:

$$\mu \colon A_k \to X \times M_{kl}(\mathbb{C}),$$
 (1)

такого что для любой точки $x \in X$ ограничение $\mu \mid_x$ вкладывает слой $(A_k)_x$ в $M_{kl}(\mathbb{C})$ в качестве унитальной подалгебры.

1.2. Конструкция препятствий. Чтобы применить стандартную технику топологической теории препятствий, сведем задачу о вложениях к задаче о сечениях подходящего расслоения.

Заметим, что группы $\mathrm{PGL}_n(\mathbb{C})$ можно заменить их компактными деформационными ретрактами $\mathrm{PU}(n)$, рассматривая вместо всех унитальных гомоморфизмов матричных алгебр только их *-гомоморфизмы.

Пусть $\mathrm{Hom}_{alg}(M_k(\mathbb{C}),\,M_{kl}(\mathbb{C}))$ — множество всех унитальных *-гомоморфизмов $M_k(\mathbb{C}) \to M_{kl}(\mathbb{C})$. Из теоремы Нетер — Сколема [1] следует его представление

$$\operatorname{Hom}_{alg}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})) \cong \operatorname{PU}(kl)/(E_k \otimes \operatorname{PU}(l))$$
 (2)

© А.Б. Ершов, 2009

(здесь и ниже символ \otimes обозначает кронекерово произведение матриц) в виде однородного пространства группы $\mathrm{PU}(kl)$. Это пространство обозначим $\mathrm{Fr}_{k,\,l}$. Полученное представление и периодичность Ботта позволяют вычислить его стабильные гомотопические группы:

$$\pi_r(\operatorname{Fr}_{k,l}) \cong \mathbb{Z}/k\mathbb{Z}$$
 для r нечетного и $\pi_r(\operatorname{Fr}_{k,l}) = 0$ для r четного. (3)

Пусть $A_k^{univ} \to \mathrm{BPU}(k)$ – универсальное $M_k(\mathbb{C})$ -расслоение. Применяя функтор (со значениями в категории топологических пространств) $\mathrm{Hom}_{alg}(\ldots,\,M_{kl}(\mathbb{C}))$ послойно к A_k^{univ} , получаем расслоение

$$H_{k,l}(A_k^{univ}) \xrightarrow{p_{k,l}} BPU(k)$$
 (4)

со слоем $Fr_{k,l}$.

Пусть $f: X \to \mathrm{BPU}(k)$ — классифицирующее отображение для $A_k \stackrel{\pi}{\to} X$, т.е. $A_k = f^*(A_k^{univ})$.

Предложение 1. Существует взаимно однозначное соответствие между вложениями (1) и подъемами (4)

$$\widetilde{f} \colon X \to \mathrm{H}_{k,l}(A_k^{univ}), \qquad p_{k,l} \circ \widetilde{f} = f,$$

классифицирующего отображения f.

Доказательство очевидно.

1.3. Первое препятствие. Применяя теорию препятствий, с учетом (3) получаем, что первое препятствие к существованию подъема \widetilde{f} — некоторый характеристический класс $\bar{\omega}_1(A_k) = f^*\bar{\omega}_1 \in H^2(X, \mathbb{Z}/k\mathbb{Z})$ расслоения $A_k \xrightarrow{\pi} X$, где $\bar{\omega}_1 \in H^2(\mathrm{BPU}(k), \mathbb{Z}/k\mathbb{Z})$.

Теорема 1. Класс $\bar{\omega}_1$ — образующая в $H^2(BPU(k), \mathbb{Z}/k\mathbb{Z}) \cong \mathbb{Z}/k\mathbb{Z}$.

Доказательство. Идея состоит в том, что существует гомотопическая эквивалентность $au_{k,l} \colon \mathrm{H}_{k,l}(A_k^{univ}) \simeq \mathrm{Gr}_{k,l}$ между тотальным пространством расслоения (4) и так называемым матричным грассманианом

$$Gr_{k,l} := PU(kl)/(PU(k) \otimes PU(l))$$
 (5)

— однородным пространством, параметризующим унитальные *-подалгебры в $M_{kl}(\mathbb{C})$, изоморфные $M_k(\mathbb{C})$ (k-подалгебры). Отображение $\tau_{k,\,l}$ задается так: для $h\in \mathrm{H}_{k,\,l}(A_k^{univ}),\ p_{k,\,l}(h)=x\ \tau_{k,\,l}(h)$ есть точка в $\mathrm{Gr}_{k,\,l}$, отвечающая k-подалгебре $h((A_k^{univ})_x)\subset M_{kl}(\mathbb{C})$. Заметим, что $\tau_{k,\,l}$ в действительности есть расслоение со стягиваемыми слоями $\mathrm{EPU}(k)$ (последнее обозначает тотальное пространство универсального $\mathrm{PU}(k)$ -расслоения).

Представление (2) показывает, что $\operatorname{Fr}_{k,\,l}$ имеет структуру главного $\operatorname{PU}(k)$ -расслоения над $\operatorname{Gr}_{k,\,l}$. Пусть $\lambda_{k,\,l}\colon\operatorname{Gr}_{k,\,l}\to\operatorname{BPU}(k)$ — его классифицирующее отображение. Тогда нетрудно показать, что $\lambda_{k,\,l}\circ\tau_{k,\,l}\simeq p_{k,\,l}$. Теперь, используя условие $(k,\,l)=1$, мы можем вычислить интересующий нас кусок гомотопической последовательности расслоения (4):

$$\pi_2(\mathrm{H}_{k,l}(A_k^{univ})) = 0 \to \pi_2(\mathrm{BPU}(k)) \cong \mathbb{Z}/k\mathbb{Z} \xrightarrow{\cong} \pi_1(\mathrm{Fr}_{k,l}) \cong \mathbb{Z}/k\mathbb{Z} \to \pi_1(\mathrm{H}_{k,l}(A_k^{univ})) = 0.$$

Рассмотрим гомоморфизм групп $\pi_2(\mathrm{BPU}(k)) \to H^2(S^2,\mathbb{Z}/k\mathbb{Z}), [g] \mapsto g^*\bar{\omega}_1$, где [g] обозначает гомотопический класс отображения $g\colon S^2\to\mathrm{BPU}(k)$. Это изоморфизм. Действительно, в силу $\pi_2(\mathrm{H}_{k,\,l}(A_k^{univ}))=0$ мы видим, что подъем в (4) существует только для отображения $g\colon S^2\to\mathrm{BPU}(k)$, гомотопический класс которого тривиален, а значит, из $[g]\neq 0$ следует $g^*\bar{\omega}_1\neq 0$, поскольку это единственное препятствие в данном случае. \square

Легко видеть, что характеристический класс $f^*\bar{\omega}_1$ может быть также описан, как препятствие к редукции структурной группы расслоения $A_k = f^*(A_k^{univ})$ с $\mathrm{PU}(k)$ до $\mathrm{SU}(k)$. Поэтому структурная группа всякого расслоения A_k , допускающего вложение в $X \times M_{kl}(\mathbb{C})$, (k,l) = 1, редуцируется к $\mathrm{SU}(k)$.

Рассмотрим случай, когда $A_k = \operatorname{End}(\xi_k)$, где $\xi_k \to X$ — векторное \mathbb{C}^k -расслоение (заметим, что препятствием к такому представлению является класс $\delta(\bar{\omega}_1(A_k)) \in H^3(X,\mathbb{Z})$, где $\delta \colon H^2(X,\mathbb{Z}/k\mathbb{Z}) \to H^3(X,\mathbb{Z})$ — кограничный гомоморфизм, отвечающий коэффициентной последовательности $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/kZ \to 0$).

Теорема 2. Для $A_k = \operatorname{End}(\xi_k)$ первое препятствие в рассматриваемой задаче есть $c_1(\xi_k) \operatorname{mod} k \in H^2(X, \mathbb{Z}/k\mathbb{Z}),$ где c_1 — первый класс Чженя.

28 Научный отдел

Доказательство. Конструкцию, аналогичную той, которая привела к (4), можно применить к $\operatorname{End}(\xi_k^{univ}) \to \operatorname{BU}(k)$, где $\xi_k^{univ} \to \operatorname{BU}(k)$ — универсальное векторное \mathbb{C}^k -расслоение; это даст $\operatorname{Fr}_{k,l}$ -расслоение:

$$H_{k,l}(\operatorname{End}(\xi_k^{univ})) \to \operatorname{BU}(k).$$
 (6)

Это расслоение — обратный образ (4) относительно отображения классифицирующих пространств $\vartheta_k \colon \mathrm{BU}(k) \to \mathrm{BPU}(k)$, индуцированного гомоморфизмом групп $\mathrm{U}(k) \to \mathrm{PU}(k)$, являющимся факторизацией по центру. Отсюда легко видеть, что первое препятствие к существованию вложения для $\mathrm{End}(\xi_k)$ есть характеристический класс $\omega_1 := \vartheta_k^*(\bar{\omega}_1) \in H^2(\mathrm{BU}(k), \mathbb{Z}/k\mathbb{Z})$, который равен $c_1 \bmod k$. \square

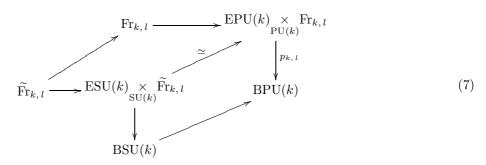
То, что $c_1 \mod k$ является препятствием к редукции структурной группы расслоения $\operatorname{End}(\xi_k)$ к $\operatorname{SU}(k)$, показывает следующее рассуждение. Имеем $c_1(\xi_k) \equiv 0 \mod k \Leftrightarrow c_1(\xi_k) = k\alpha, \ \alpha \in H^2(X,\mathbb{Z})$. Возьмем линейное расслоение $\zeta \to X$, такое что $c_1(\zeta) = -\alpha$. Тогда $c_1(\xi_k \otimes \zeta) = c_1(\xi_k) + kc_1(\zeta) = 0$, т.е. $\xi_k \otimes \zeta$ есть расслоение со структурной группой $\operatorname{SU}(k)$. С другой стороны, $\operatorname{End}(\xi_k) = \operatorname{End}(\xi_k \otimes \zeta)$.

1.4. Второе препятствие. Предположим теперь, что для расслоения $A_k \stackrel{\pi}{\to} X$ первое препятствие равно 0, тогда, как мы показали ранее, $A_k \cong \operatorname{End}(\widetilde{\xi}_k)$, где $\widetilde{\xi}_k \to X$ — векторное \mathbb{C}^k -расслоение со структурной группой $\operatorname{SU}(k)$. Эквивалентно, классифицирующее отображение $f\colon X\to \operatorname{BPU}(k)$ можно поднять до $\widehat{f}\colon X\to \operatorname{BSU}(k)$. Из (3) теперь мы видим, что следующее препятствие лежит в $H^4(X,\mathbb{Z}/k\mathbb{Z})$.

Теорема 3. Второе препятствие — в точности $c_2(\widetilde{\xi}_k) \mod k$, второй класс Чженя расслоения $\widetilde{\xi}_k$, приведенный по модулю k.

Доказательство. Заметим, что пространство $\widetilde{\operatorname{Fr}}_{k,\,l} := \operatorname{SU}(kl)/(E_k \otimes \operatorname{SU}(l))$ — универсальное накрытие для $\operatorname{Fr}_{k,\,l}$ (ср. (2)). Заметим также, что конструкция расслоения (4) показывает, что оно ассоциировано с универсальным главным $\operatorname{PU}(k)$ -расслоением $\operatorname{EPU}(k) \to \operatorname{BPU}(k)$ относительно соответствующего (правого) действия $\operatorname{PU}(k)$ на слое $\operatorname{Fr}_{k,\,l} = \operatorname{Hom}_{alg}(M_k(\mathbb{C}), M_{kl}(\mathbb{C}))$.

Легко видеть, что существует коммутативная диаграмма расслоений:



Здесь $p_{k,\,l}$ — расслоение (4), причем тотальные пространства гомотопически эквивалентны. Из $\pi_3(\widetilde{\operatorname{Fr}}_{k,\,l}) = \mathbb{Z}/k\mathbb{Z}$ следует, что препятствие есть характеристический класс $\omega_2 \in H^4(\mathrm{BSU}(k),\,\mathbb{Z}/k\mathbb{Z})$. Поскольку $c_2(\widetilde{\xi}_k^{univ}) \bmod k$, где $\widetilde{\xi}_k^{univ} \to \mathrm{BSU}(k)$ — универсальное $\mathrm{SU}(k)$ -расслоение, является образующей для $H^4(\mathrm{BSU}(k),\,\mathbb{Z}/k\mathbb{Z}) \cong \mathbb{Z}/k\mathbb{Z}$, имеем:

$$\omega_2 = \alpha c_2(\widetilde{\xi}_k^{univ}) \bmod k \in H^4(\mathrm{BSU}(k), \mathbb{Z}/k\mathbb{Z}), \qquad \alpha \in \mathbb{Z}. \tag{8}$$

Кусок гомотопической последовательности для нижнего расслоения в (7)

$$\pi_4(\widetilde{\operatorname{Fr}}_{k,\,l}) \to \pi_4(\operatorname{ESU}(k) \underset{\operatorname{SU}(k)}{\times} \widetilde{\operatorname{Fr}}_{k,\,l}) \to \pi_4(\operatorname{BSU}(k)) \to \pi_3(\widetilde{\operatorname{Fr}}_{k,\,l}) \to \pi_3(\operatorname{ESU}(k) \underset{\operatorname{SU}(k)}{\times} \widetilde{\operatorname{Fr}}_{k,\,l})$$

имеет вид

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/k\mathbb{Z} \to 0.$$

Следовательно, образ $\pi_4(\mathrm{ESU}(k) \underset{\mathrm{SU}(k)}{\times} \widetilde{\mathrm{Fr}}_{k,\,l}) \hookrightarrow \pi_4(\mathrm{BSU}(k))$ — подгруппа индекса k. Полагая $X = S^4$ и рассуждая, как в конце доказательства теоремы 1, получаем, что α в (8) обратимо по модулю k. \square

1.5. Высшие препятствия. В общем случае «высшие» препятствия лежат в $H^{2r}(X,\mathbb{Z}/k\mathbb{Z}), r \in \mathbb{N},$ но для r>2 они уже не совпадают с обычными классами Чженя, приведенными по модулю k.

Математика 29

Чтобы это показать, возьмем $X=S^8$ и рассмотрим 6-мерное векторное расслоение $\xi_6\to S^8$. Хорошо известно [2], что для S^{2r} классы Чженя векторных расслоений образуют подгруппу индекса (r-1)! в $H^{2r}(S^{2r},\mathbb{Z})\cong\mathbb{Z}$. В частности, в нашем случае $r=4,\,k=6$ имеем $c_4(\xi_6)\equiv 0\,(\mathrm{mod}\,6)$, но из гомотопической последовательности расслоения (4) следует, что не каждое такое расслоение имеет подъем.

Однако теоремы 2 и 3 можно обобщить следующим образом. Пусть $\iota\colon \mathrm{BU}\langle 2r\rangle \to \mathrm{BU}-(2r-1)$ -связное накрытие BU (т.е. его первая нетривиальная гомотопическая группа лежит в размерности 2r). Например, $\mathrm{BU}\langle 2\rangle = \mathrm{BU}$, $\mathrm{BU}\langle 4\rangle = \mathrm{BSU},\dots$ Тогда известно [3], что образ r-го класса Чженя при гомоморфизме $\iota^*\colon H^*(\mathrm{BU},\mathbb{Z})\to H^*(\mathrm{BU}\langle 2r\rangle,\mathbb{Z})$ делится на (r-1)! (заметим, что этот результат обобщает приведенный выше факт о классах Чженя расслоений над сферами). Положим $\widetilde{c}_r:=\frac{\iota^*(c_r)}{(r-1)!}$.

Теорема 4. Для расслоений, классифицируемых $\mathrm{BU}\langle 2r \rangle$, первое нетривиальное препятствие в нашей задаче есть класс $\widetilde{c}_r \bmod k$.

Доказательство. Для (2r-1)-связного накрытия $\iota_k\colon \mathrm{BU}(k)\langle 2r\rangle \to \mathrm{BU}(k),\ k>r$ пространства $\mathrm{BU}(k)$ рассмотрим $\mathrm{Fr}_{k,\,l}$ -расслоение $\iota_k^*(\mathrm{H}_{k,\,l}(\mathrm{End}(\xi_k^{univ})))\to \mathrm{BU}(k)\langle 2r\rangle$, индуцированное из (6). Ясно, что первое препятствие к подъему в этом расслоении — некоторый характеристический класс $\omega_r\in H^{2r}(\mathrm{BU}(k)\langle 2r\rangle,\ \pi_{2r-1}(\mathrm{Fr}_{k,\,l}))=H^{2r}(\mathrm{BU}(k)\langle 2r\rangle,\ \mathbb{Z}/k\mathbb{Z})\cong \mathbb{Z}/k\mathbb{Z}.$ Используя гомотопическую последовательность расслоения, нетрудно посчитать, что $\pi_{2r}(\iota_k^*(\mathrm{H}_{k,\,l}(\mathrm{End}(\xi_k^{univ}))))\cong \mathbb{Z}$ и что образ вложения $\pi_{2r}(\iota_k^*(\mathrm{H}_{k,\,l}(\mathrm{End}(\xi_k^{univ}))))\hookrightarrow \pi_{2r}(\mathrm{BU}(k)\langle 2r\rangle)\cong \mathbb{Z}$ — подгруппа индекса k. Теперь, используя аргумент с S^{2r} как в конце предыдущего доказательства, получаем, что для расслоения $\xi_k\to S^{2r}$, соответствующего образующей $1\in\pi_{2r}(\mathrm{BU}(k))\cong \mathbb{Z}$, класс ω_r — образующая в $H^{2r}(S^{2r},\ \mathbb{Z}/k\mathbb{Z})\cong \mathbb{Z}/k\mathbb{Z}$, т.е. $\omega_r=\widetilde{c}_r \bmod k$, что и требовалось. \square

2. СВЯЗЬ С РАССЛОЕНИЯМИ СО СТРУКТУРНЫМ ГРУППОИДОМ

Расслоение (4), возникшее при описании препятствий к вложению (1), является универсальным главным расслоением некоторого топологического группоида $\mathfrak{G}_{k,\,l}$.

2.1. Группоид $\mathfrak{G}_{k,\,l}$. Фиксируем комплексную матричную алгебру $M_{kl}(\mathbb{C})$. Напомним, что унитальные *-подалгебры в $M_{kl}(\mathbb{C})$, изоморфные $M_k(\mathbb{C})$, мы называем k-подалгебрами.

Рассмотрим категорию $C_{k,\,l}$, объектами которой являются k-подалгебры в $M_{kl}(\mathbb{C})$, а морфизмами из одной k-подалгебры $M_{k,\,\alpha}\subset M_{kl}(\mathbb{C})$ в другую $M_{k,\,\beta}\subset M_{kl}(\mathbb{C})$ — множество всех унитальных *-гомоморфизмов $M_{k,\,\alpha}\to M_{k,\,\beta}$. Легко видеть, что $C_{k,\,l}$ — группоид, т.е. малая категория, в которой всякий морфизм является изоморфизмом. Кроме того, это топологический группоид (и даже группоид Ли), который мы обозначим $\mathfrak{G}_{k,\,l}$. Пространство его объектов $\mathfrak{G}_{k,\,l}^0$ — матричный грассманиан $\mathrm{Gr}_{k,\,l}$ (5). Пространство морфизмов $\mathfrak{G}_{k,\,l}$ описывается так. Во-первых, заметим, что матричный грассманиан $\mathrm{Gr}_{k,\,l}$ — база тавтологического (над точкой $\alpha\in\mathrm{Gr}_{k,\,l}$ «висит» k-подалгебра $M_{k,\,\alpha}\subset M_{kl}(\mathbb{C})$, параметризуемая этой точкой) $M_k(\mathbb{C})$ -расслоения, которое обозначим $\mathcal{A}_{k,\,l}\to\mathrm{Gr}_{k,\,l}$. Применяя к нему послойно функтор $\mathrm{Hom}_{alg}(\dots,M_{kl}(\mathbb{C}))$, получаем пространство $\mathrm{H}_{k,\,l}(\mathcal{A}_{k,\,l})$, которое и есть $\mathfrak{G}_{k,\,l}$ (ср. (4)).

Будучи группоидом, $\mathfrak{G}_{k,l}$ задано вместе со структурными морфизмами: $s,t\colon \mathfrak{G}_{k,l} \rightrightarrows \mathfrak{G}_{k,l}^0$, композицией $m\colon \mathfrak{G}_{k,l} \overset{\times}{\to} \mathfrak{G}_{k,l} \to \mathfrak{G}_{k,l}$, единицей $e\colon \mathfrak{G}_{k,l}^0 \to \mathfrak{G}_{k,l}$ и обращением $i\colon \mathfrak{G}_{k,l} \to \mathfrak{G}_{k,l}$.

Опишем, например, s и t в терминах топологических пространств $\operatorname{Gr}_{k,\,l} \sim \mathfrak{G}_{k,\,l}^0$ и $\operatorname{H}_{k,\,l}(\mathcal{A}_{k,\,l}) \sim \mathfrak{G}_{k,\,l}$. Морфизм $s\colon \operatorname{H}_{k,\,l}(\mathcal{A}_{k,\,l}) \to \operatorname{Gr}_{k,\,l}$ — в точности отображение проекции расслоения, индуцированное проекцией тавтологического расслоения $\mathcal{A}_{k,\,l} \to \operatorname{Gr}_{k,\,l}$. Морфизм $t\colon \operatorname{H}_{k,\,l}(\mathcal{A}_{k,\,l}) \to \operatorname{Gr}_{k,\,l}$ — отображение $h \mapsto h((\mathcal{A}_{k,\,l})_{\alpha})$, где $h \in \operatorname{H}_{k,\,l}(\mathcal{A}_{k,\,l})$, $s(h) = \alpha$, и мы как обычно отождествляем k-подалгебру $h((\mathcal{A}_{k,\,l})_{\alpha})$ с соответствующей точкой $\operatorname{Gr}_{k,\,l}$.

Заметим, что имеются бифункторы $C_{k,l} \times C_{m,n} \to C_{km,ln}$, индуцированные тензорным произведением матричных алгебр, и соответствующие морфизмы топологических группоидов

$$\mathfrak{G}_{k,l} \times \mathfrak{G}_{m,n} \to \mathfrak{G}_{km,ln},\tag{9}$$

накрывающие соответствующие отображения $\operatorname{Gr}_{k,l} \times \operatorname{Gr}_{m,n} \to \operatorname{Gr}_{km,ln}$ матричных грассманианов [4]. Для $\alpha \in \operatorname{Ob}(C_{k,l})$ рассмотрим (полную) подкатегорию в $C_{k,l}$ с одним объектом α . Соответствую-

30 Научный отдел

щий морфизм группоидов $\mathrm{PU}(k) o \mathfrak{G}_{k,\,l} - \mathsf{M}$ орита-морфизм, т.е. диаграмма

$$PU(k) \longrightarrow \mathfrak{G}_{k, l}$$

$$\downarrow s \times t$$

$$\alpha \longrightarrow Gr_{k, l} \times Gr_{k, l}$$

является декартовым квадратом.

2.2. Универсальное главное $\mathfrak{G}_{k,l}$ -расслоение. Напомним, что для топологической группы G универсальное главное расслоение получается из свободного действия G на стягиваемом пространстве EG. Тогда классифицирующее пространство BG — пространство орбит EG/G этого действия. Понятия главного и универсального главного расслоения естественно обобщаются на случай топологического группоида \mathfrak{G} , причем последнее получается из свободного действия \mathfrak{G} на пространстве E \mathfrak{G} , гомотопически эквивалентном пространству объектов \mathfrak{G}^0 [5, II. 8] (если группоид является группой, то это сводится к универсальному расслоению группы, поскольку группу можно рассматривать как группоид с единственным объектом).

В доказательстве теоремы 1 мы определили отображение $au_{k,\,l}\colon \mathrm{H}_{k,\,l}(A_k^{univ}) \to \mathrm{Gr}_{k,\,l},$ $h\mapsto h((A_k^{univ})_x)\subset M_{kl}(\mathbb{C}),$ где $x\in\mathrm{BPU}(k)$ и $h\in p_{k,\,l}^{-1}(x),$ которое является расслоением со стягиваемыми слоями, в частности, гомотопической эквивалентностью; причем, напомним, $\mathrm{Gr}_{k,\,l}=\mathfrak{G}_{k,\,l}^0.$ Имеется свободное действие φ группоида $\mathfrak{G}_{k,\,l}$:

$$\varphi \colon \mathfrak{G}_{k,\,l} \underset{s \, \operatorname{Gr}_{k}^{\tau_{l}}}{\times} \operatorname{H}_{k,\,l}(A_{k}^{univ}) \to \operatorname{H}_{k,\,l}(A_{k}^{univ})$$

 $(au:= au_{k,l})$, определенное с помощью композиции гомоморфизмов алгебр. Точнее, для $g\in \mathfrak{G}_{k,l}$, $h\in p_{k,l}^{-1}(x),\ x\in \mathrm{BPU}(k)$, такого что $s(g)= au_{k,l}(h)$, полагаем $\varphi(g,h):=g(h((A_k^{univ})_x))\subset M_{kl}(\mathbb{C})$ (в частности, $au_{k,l}(\varphi(g,h))=t(g)$).

Теорема 5. База главного $\mathfrak{G}_{k,l}$ -расслоения $(H_{k,l}(A_k^{univ}), \mathfrak{G}_{k,l}, \varphi)$ есть BPU(k) (ср. (4)). Доказательство. Нетрудно проверить, что отображение

$$\mathfrak{G}_{k,\,l} \underset{s \, \mathfrak{G}_{k,\,l}^0}{\times} \mathrm{H}_{k,\,l}(A_k^{univ}) \to \mathrm{H}_{k,\,l}(A_k^{univ}) \underset{\mathrm{BPU}(k)}{\times} \mathrm{H}_{k,\,l}(A_k^{univ}), \ (g,\,p) \mapsto (gp,\,p)$$

является гомеоморфизмом. \square

Таким образом, действие φ определяет на расслоении (4) структуру главного $\mathfrak{G}_{k,\,l}$ -расслоения. Более того, так как $\tau_{k,\,l}\colon \mathrm{H}_{k,\,l}(A_k^{univ})\to \mathrm{Gr}_{k,\,l}$ имеет стягиваемые слои, это *универсальное* главное расслоение для $\mathfrak{G}_{k,\,l}$. Тем самым мы доказали гомотопическую эквивалентность $\mathrm{B}\mathfrak{G}_{k,\,l}\simeq \mathrm{BPU}(k)$.

2.3. Частичные изоморфизмы. Пусть, как в п. 1.1 $A_k \stackrel{\pi}{\to} X - M_k(\mathbb{C})$ -расслоение над X и $\mu \colon A_k \hookrightarrow X \times M_{kl}(\mathbb{C})$ ((k,l)=1) — отображение расслоений, которое является унитальным *-гомоморфизмом алгебр на каждом слое. Таким образом, каждый слой $(A_k)_x, \ x \in X$ можно отождествить с соответствующей k-подалгеброй $\mu|_x((A_k)_x) \subset M_{kl}(\mathbb{C})$ и, фактически, мы рассматриваем тройки $(A_k, \mu, X \times M_{kl}(\mathbb{C}))$. Пусть $(A'_k, \mu', X \times M_{kl}(\mathbb{C}))$ — другая тройка этого вида. Предположим что расслоения A_k и A'_k изоморфны и выберем некоторый конкретный *-изоморфизм $\vartheta \colon A_k \cong A'_k$.

Заметим, что вложения μ , μ' определяют соответствующие отображения в матричный грассманиан $f_{\mu}, f_{\mu'} \colon X \to \operatorname{Gr}_{k, l}$ и, более того, ϑ, μ и μ' определяют отображение $\nu \colon X \to \mathfrak{G}_{k, l}$, такое что $s \circ \nu = f_{\mu}, \ t \circ \nu = f_{\mu'}$ и $\nu|_x = \mu' \circ \vartheta|_x \circ \mu^{-1} \colon \mu((A_k)_x) \to \mu'((A'_k)_x)$.

Обратно, отображение $\nu\colon X\to \mathfrak{G}_{k,\,l}$ определяет некоторые отображения $f_\mu:=s\circ\nu$ и $f_{\mu'}:=t\circ\nu$: $X\to \mathrm{Gr}_{k,\,l}$, которые отвечают некоторым тройкам $(A_k,\,\mu,\,X\times M_{kl}(\mathbb{C})),\,(A_k',\,\mu',\,X\times M_{kl}(\mathbb{C})),$ и изоморфизм $\vartheta\colon A_k\cong A_k'$.

Такое ν естественно назвать *частичным изоморфизмом* из $(A_k, \mu, X \times M_{kl}(\mathbb{C}))$ в $(A'_k, \mu', X \times M_{kl}(\mathbb{C}))$. Частичный изоморфизм, который может быть поднят до «настоящего» автоморфизма тривиального расслоения $X \times M_{kl}(\mathbb{C})$ (т.е. до отображения расслоений $\widetilde{\vartheta} \colon X \times M_{kl}(\mathbb{C}) \to X \times M_{kl}(\mathbb{C})$, такого что диаграмма

Математика 31

$$A_{k} \xrightarrow{\vartheta} A'_{k}$$

$$\downarrow^{\mu'}$$

$$X \times M_{kl}(\mathbb{C}) \xrightarrow{\widetilde{\vartheta}} X \times M_{kl}(\mathbb{C})$$

коммутативна), назовем просто изоморфизмом.

Заметим, что не всякий частичный изоморфизм может быть поднят до изоморфизма, что связано с существованием негомотопных вложений μ . Задача подъема эквивалентна редукции структурного группоида [6] и препятствия к ней могут быть явно описаны.

2.4. Действие группоида на слоях забывающего функтора. Рассмотрим функтор

$$(A_k, \mu, X \times M_{kl}(\mathbb{C})) \mapsto A_k,$$

«забывающий» вложение μ и отвечающий отображению представляющих пространств $\mathrm{Gr}_{k,\,l} \to \mathrm{BPU}(k)$ (с гомотопическим слоем $\mathrm{Fr}_{k,\,l}$).

Ранее мы показали, что для $f\colon X\to \mathrm{BPU}(k)$ выбор подъема $\widetilde{f}\colon X\to \mathrm{H}_{k,\,l}(A_k^{univ})$ (если он существует) эквивалентен выбору вложения $\mu\colon f^*(A_k^{univ})\to X\times M_{kl}(\mathbb{C})$. Такой подъем обозначим через \widetilde{f}_μ .

Для данного $\nu\colon X\to \mathfrak{G}_{k,\,l}$, такого что $s\circ \nu=\tau_{k,\,l}\circ \widetilde{f}_\mu=f_\mu,\ t\circ \nu=f_{\mu'}\colon X\to \mathrm{Gr}_{k,\,l}$, определим композицию $\widetilde{f}_{\mu'}\colon$

$$X \stackrel{diag}{\to} X \times X \stackrel{\nu \times \widetilde{f}_{\mu}}{\longrightarrow} \mathfrak{G}_{k,\, l} \underset{\operatorname{Gr}_k^{-\tau}_l}{\times} \operatorname{H}_{k,\, l}(A_k^{univ}) \stackrel{\varphi}{\to} \operatorname{H}_{k,\, l}(A_k^{univ}),$$

которая есть другой подъем f $(p_{k,\,l}\circ\widetilde{f}_\mu=f=p_{k,\,l}\circ\widetilde{f}_{\mu'})$, т.е. отвечает другому (вообще говоря, гомотопически неэквивалентному) вложению $\mu'\colon f^*(A_k^{univ})\to X\times M_{kl}(\mathbb{C})$, т.е. $f_{\mu'}=\tau_{k,\,l}\circ\widetilde{f}_{\mu'}\colon X\to \mathrm{Gr}_{k,\,l}$. Ясно, что определенное действие транзитивно на гомотопических классах таких вложений.

2.5. Переход к прямому пределу. Заметим, что отображения (9) отвечают отображениям классифицирующих пространств

(где (km, ln) = 1), индуцированным тензорным произведением расслоений на матричные алгебры [4]. Ввиду гомотопической эквивалентности $H_{k, l}(A_k^{univ}) \simeq Gr_{k, l}$ получаем морфизм H-пространств

$$\operatorname{Gr} \to \varinjlim_{k} \operatorname{BPU}(k),$$
 (10)

где $\mathrm{Gr}:=\varinjlim_{(k,\,l)=1}\mathrm{Gr}_{k,\,l}$ [4] и прямые пределы берутся относительно отображений, индуцированных

тензорным произведением матричных алгебр. Ввиду изоморфизма H-пространств $\mathrm{Gr}\cong\mathrm{BSU}_\otimes$ [4], отображение (10) — композиция отображений локализации

$$\mathrm{BSU}_{\otimes} \to \prod_{n\geq 2} \mathrm{K}(\mathbb{Q},\,2n)$$

и включения

$$\prod_{n\geq 2} \mathrm{K}(\mathbb{Q},\,2n) \hookrightarrow \mathrm{K}(\mathbb{Q}/\mathbb{Z},\,2) \times \prod_{n\geq 2} \mathrm{K}(\mathbb{Q},\,2n) \simeq \varinjlim_{k} \mathrm{BPU}(k).$$

Морфизм H-пространств (10) позволяет определить интересный гомотопический инвариант пространства X. Рассмотрим абелеву группу

$$\operatorname{coker}\{[X,\operatorname{Gr}] \to [X,\varinjlim_{k}\operatorname{BPU}(k)]\},\tag{11}$$

32 Научный отдел

где гомоморфизм групп гомотопических классов отображений индуцирован морфизмом H-пространств (10). Эта группа допускает следующее «геометрическое» описание. Если существует вложение $\mu \colon A_k \hookrightarrow X \times M_{kl}(\mathbb{C})$ для некоторого l, (k, l) = 1, то $M_k(\mathbb{C})$ -расслоение $A_k \to X$ называется вложи*мым* (заметим, что из предыдущих результатов видно, что если l достаточно велико, то вложимость не зависит от выбора конкретного l, но только от самого расслоения A_k). Если существуют вложимые расслоения $A_l,\,B_n$, такие что $C_k\otimes A_l\cong D_m\otimes B_n$, то $M_k(\mathbb C)$ и $M_m(\mathbb C)$ -расслоения $C_k,\,D_m$ над Xназываются эквивалентными. Множество классов такой эквивалентности расслоений над данной базой X относительно операции, индуцированной тензорным произведением, является группой. Она совпадает с коядром (11). В частности, для каждой четномерной сферы S^{2n} она изоморфна \mathbb{Q}/\mathbb{Z} (и 0 для нечетномерной).

Автор выражает благодарность А.С. Мищенко, Е.В. Троицкому и Томасу Шику за конструктивное обсуждение вопросов, затронутых в данной статье.

Работа выполнена при финансовой поддержке РФФИ (проекты 07-01-00046-а, 07-01-91555-ННИО_а и 08-01-00034-а).

Библиографический список

- 543 c.
- 2. Каруби М. К-теория. Введение. М.: Мир, 1981. 360 с. 3. Peterson F.P. Some remarks on Chern classes //

Annals of Math. 1959. V. 69. P. 414-420.

- 4. Ershov A. V. A generalization of the topological Brauer group // J. of K-theory: K-theory and its Applications
- 1. Пирс Р. Ассоциативные алгебры. М.: Мир, 1986. to Algebra, Geometry and Topology. 2008. V. 2, Spec. Iss. 03. P. 407-444.
 - 5. Connes A. Noncommutative geometry. N.Y.: Academic Press, 1994. 661 p.
 - 6. Ershov A.V. Topological obstructions to embedding of a matrix algebra bundle into a trivial one // http://arxiv.org/abs/0807.3544.

УДК 512.534

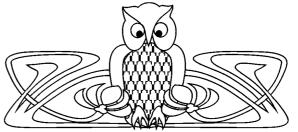
ОТНОШЕНИЯ ГРИНА И ОБОБШЁННЫЕ ОТНОШЕНИЯ ГРИНА НА НЕКОТОРЫХ ПОЛУГРУППАХ **ПРЕОБРАЗОВАНИЙ**

И.Б. Кожухов, В.А. Ярошевич

Московский институт электронной техники, кафедра высшей математики - 1 E-mail: Kozhuhov_I_B@mail.ru, V-Yaroshevich@ya.ru

Исследуются отношения Грина \mathscr{L} , \mathscr{R} на полугруппах изотонных преобразований частично упорядоченных множеств, а также обобщённые отношения Грина \mathscr{L}^* , \mathscr{R}^* на полугруппе B(X)бинарных отношений на множестве X. Доказано, что хотя полугруппа B(X) не регулярна при $|X| \geqslant 3$, но в ней, как во всякой регулярной полугруппе $\mathscr{L}=\mathscr{L}^*$, $\mathscr{R}=\mathscr{R}^*$.

Ключевые слова: частично упорядоченное множество, полугруппа изотонных преобразований, отношение Грина на полугруппе, обобщённые отношения Грина, полугруппа бинарных отношений.



The Green's Relations and the Generalized Green's Relations on Certain Transformation Semigroups

I.B. Kozhukhov, V.A. Yaroshevich

Moscow Institute of Electronic Technology, Chair of Higher Mathematics - 1

E-mail: Kozhuhov_I_B@mail.ru, V-Yaroshevich@ya.ru

We investigate the Green's relations \mathcal{L} , \mathcal{R} on the semigroups of isotone transformations of the partially ordered sets, and also the generalized Green's relations \mathcal{L}^* , \mathcal{R}^* on the semigroup B(X) of binary relations on a set X. It is proved that $\mathscr{L}=\mathscr{L}^*, \mathscr{R}=\mathscr{R}^*$ in the semigroup B(X) though this semigroup is non-regular for $|X| \geqslant 3$.

Key words: partially ordered set, semigroup of isotone transformations, Green's relations on semigroup, generalized Green's relations, semigroup of binary relations.

В работе используются основные понятия теории полугрупп из монографии [1]. Пусть S — полугруппа, $S^1 = S \cup \{1\}$ — полугруппа S с внешне присоединённой единицей 1. Отношения левой и правой делимости в S определяются обычным образом:

$$a \leqslant_l b \Leftrightarrow S^1 a \subseteq S^1 b, \qquad a \leqslant_r b \Leftrightarrow aS^1 \subseteq bS^1.$$