1980. Вып. 44. С. 15-34.

ЗАКЛЮЧЕНИЕ

На основе созданной программы был проведен численный эксперимент по определению как поля скоростей, так и поля температур жидкого кольца. На основе полученных результатов исследован эффект влияния недиссипативной составляющей тензора вязкости на вид распределения температурного поля. Показано, что для реальных жидкостей эффект повышения температуры за счет диссипации ничтожен. На примере модельной жидкости исследован характер прогрева вращающегося по инерции жидкого теплоизоливанного кольца со свободными границами и предложен вариант объяснения полученной закономерности. Так же установлено, что недиссипативная составляющая тензора вязкости влияет на изменение температурного поля кольца только косвенно, через поле скоростей.

Библиографический список

1. Андреев В. К., Бублик В. В., Бытев В. О. Симметрии неклассических моделей гидродинамики. Новосибирск, 2003. 352 с.

2. Овсянников Л. В. Общие уравнения и примеры // Задача о неустановившемся движении жидкости со свободной границей: сб. работ теор. отдела ИГ СО АН СССР. Новосибирск, 1967. С. 5–75.

3. *Бытев В.О.* Неустановившиеся движения кольца вязкой несжимаемой жидкости со свободными границами // ПМТФ. 1970. № 3. С. 88–98.

4. *Пухначев В. В.* Неклассические задачи теории пограничного слоя. Новосибирск, 1980.

5. Лаврентьева О.М. Неустановившееся движение вращающегося кольца вязкой капиллярной жидкости // Динамика сплошной среды: сб. науч. тр. ИГ СО АН СССР. Новосибирск, 1978. Вып. 31. С. 52–60.

6. Лаврентьева О. М. Предельные режимы движения вращающегося вязкого кольца // Динамика сплошной

УДК 539.374

УСТОЙЧИВОСТЬ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С УПРУГОВЯЗКОПЛАСТИЧЕСКИМ ЗАПОЛНИТЕЛЕМ ПРИ ОСЕВОМ НАГРУЖЕНИИ

Д. В. Гоцев

Военный авиационный инженерный университет, Воронеж, кафедра математики E-mail: rbgotsev@mail.ru

В рамках точных трехмерных уравнений устойчивости исследована устойчивость состояния равновесия цилиндрической оболочки с заполнителем при осевом нагружении. Вычисления проводились для случая, когда материал оболочки моделировался упругим телом, а материал заполнителя – средой со сложными реологическими свойствами – упруговязкопластической. Дана оценка влияния на величину критического давления параметров оболочки и заполнителя.

Ключевые слова: точные трехмерные уравнения, устойчивость равновесия, цилиндрическая оболочка, заполнитель, сложная реология, осевое сжатие.

среды: сб. науч. тр. ИГ СО АН СССР. Новосибирск,

7. Бытев В.О., Гербер Е.А. Об одной задаче с двумя свободными границами // Современные проблемы ма-

тематики и её прикладные аспекты: материалы Всерос.

8. Бытев В.О., Гербер Е.А. Численное моделирова-

ние динамики жидкого кольца // Наукоемкие информа-

ционные технологии: тр. XIV молодежной науч.-практ.

9. Bytev V.O. Building of Mathematical Models of

continuum media on the basis of invariante principle //

10. Бытев В. О., Гербер Е. А. О восстановлении точно-

го решения и о распространении температуры в коль-

це жидкости // Математическое и информационное

моделирование: сб. науч. тр. Тюмень, 2009. Вып. 11.

конф. Переславль-Залесский, 2010. С. 109-114.

Acta Appl. Math. 1989. Vol. 16. P. 117-142

науч.-практ. конф. Пермь, 2010. С. 100.

Stability of the Cylindrical Cover with the Elastic-Viscous-Plastic Filler at Axial Compression

D. V. Gotsev

C. 50-57.

Military Aviation Engineering University, Voronezh, Chair of Mathematics E-mail: rbgotsev@mail.ru

Within the limits of the exact three-dimensional equations of stability of an equilibrium state of a cylindrical cover with a filler is investigated at axial compression. Calculations were spent for a case when the cover material was modelled by an elastic body, and a filler material – environment with difficult rheological properties – elasticviscous-plastic. The estimation of influence on size of critical pressure of parameters of a cover and a filler is given.

Key words: exact three-dimensional equations, stability of balance, cylindrical cover, filler, difficult rheology, axial compression.

ВВЕДЕНИЕ

Известно [1], что труба из материала со сложной реологией теряет устойчивость раньше, чем исчерпает свою несущую способность. Поэтому определение нагрузки, при которой возможна потеря устойчивости основного состояния представляет практический интерес при расчете монолитной крепи для шахтных стволов, обсадных труб вертикальных скважин и т.д. Исследованию устойчивости цилиндрической оболочки с упругопластическим заполнителем при осевом нагружении посвящены работы [2,3]. При этом заполнитель описывался соотношениями теории малых упругопластических деформаций [4,5] и предположений степенной зависимости между интенсивностями напряжений и деформаций. В отличие от [2,3] в настоящей работе на основе точных трехмерных линеаризированных уравнений устойчивости [6] исследуется устойчивость основного состояния цилиндрической оболочки с заполнителем при осевом нагружении. При этом материал заполнителя моделировался средой с более сложными реологическими свойствами — упруговязкопластической. Первый этап решения этой задачи заключается в нахождении основного (докритического) напряженно деформированного состояния цилиндрической оболочки с заполнителем, второй — в решении самой линеаризованной задачи устойчивости, т.е. в определении критической величины сжимающего давления, равномерно распределенного по вешнему контуру оболочки.

1. ПОСТАНОВКА ЗАДАЧИ

При решении данной задачи основное напряженно деформированное состояние определялось в рамках второго варианта геометрически линейной теории (т. е. сдвиги и удлинения пренебрежимо малы по сравнению с единицей и геометрические соотношения взяты в линейной форме [7]). При этом в упругой области (оболочке) имеет место закон Гука, а в пластической области (заполнителе) соотношения теории упруговязкопластического тела.

Для описания упруговязкопластических свойств воспользуемся моделью среды со сложными реологическими свойствами и функцией нагружения в виде [6]

$$F = (S_i^j - c(\varepsilon_i^j)^p - \eta(e_i^j)^p)(S_j^i - c(\varepsilon_j^i)^p - \eta(e_j^i)^p) - k^2$$
(1)

и ассоциированным законом течения в форме

$$(e_i^j)^p = \lambda_0 (S_i^j - c(\varepsilon_i^j)^p - \eta(e_i^j)^p).$$
⁽²⁾

Верхние индексы p и e приписываются величинам, характеризующим пластическое и упругое состояния тела соответственно. Здесь $S_j^i = \sigma_j^i - \frac{1}{3}\sigma_k^k g_j^i$ — компоненты девиатора тензора напряжений, $(\varepsilon_i^j)^p$ — компоненты тензора пластических деформаций, $(e_i^j)^p$ — компоненты тензора скоростей пластических деформаций; с и η — коэффициенты упрочнения и вязкости соответственно, k — предел текучести, λ_0 — неопределенный множитель. При этом компоненты тензора полных деформаций ε_j^i удовлетворяют условию [6]

$$\varepsilon_j^i = (\varepsilon_j^i)^p + (\varepsilon_j^i)^e. \tag{3}$$

Компоненты тензора упругих деформаций связаны с компонентами тензора напряжений законом Гука:

$$\sigma^{ij} = (\lambda g^{ij} g^{rk} + \mu (g^{ik} g^{jr} + g^{ir} g^{jk})) \varepsilon_{rk}.$$
(4)

Здесь λ , μ — параметры Ламе, g^{ij} — компоненты метрического тензора.

Компоненты тензора полных деформаций связаны с компонентами вектора перемещений u_i формулами Коши:

$$\varepsilon_{ij} = \frac{1}{2} (\nabla_i u_j + \nabla_j u_i). \tag{5}$$

Здесь и далее ∇ — символ ковариантного дифференцирования.

Уравнения равновесия и граничные условия приняты в обычной форме.

Рассмотрим конструкцию, состоящую из шарнирно-опёртой сжимаемой упругой цилиндрической оболочки толщиной 2h и длиной l с упруговязкопластическим заполнителем при сжатии усилиями интенсивности q вдоль образующей (рис. 1). Причем усилия действуют как на оболочку, так и заполнитель, которые одинаково деформируются на величину $\varepsilon_{zz}^{(1)0} = \varepsilon_{zz}^0 = \varepsilon$. Здесь и далее индекс «0» вверху

еличин обозначает их принадлежность к основному докритиескому состоянию, индекс «(1)» вверху — принадлежность к болочке, его отсутствие — принадлежность к заполнителю.

Исходя из уравнений равновесия и граничных условий на боковой поверхности, привлекая при этом соотношения (1)–(5), учитывая условия несжимаемости для заполнителя, а также условия на линии спая оболочка – заполнитель находим докритическое напряженно деформированное состояние данной конструкции, которое в полярных координатах (r, θ) имеет вид: в сжимаемой упругой оболочке

$$\begin{split} u_r^{0(1)} &= C_1 r + \frac{C_2}{r}, \quad \varepsilon_{rr}^{0(1)} = -\frac{C_1}{r^2} - \frac{\varepsilon}{2}, \quad \varepsilon_{\theta\theta}^{0(1)} = \frac{C_1}{r^2} - \frac{\varepsilon}{2}, \\ \varepsilon_{zz}^{0(1)} &= \varepsilon, \quad \sigma_{zz}^{0(1)} = 2C_1\lambda^{(1)} + (\lambda^{(1)} + \mu^{(1)})\varepsilon, \\ \sigma_{rr}^{0(1)} &= 2C_1(\lambda^{(1)} + \mu^{(1)}) - 2C_2\mu^{(1)}/r^2 + \lambda^{(1)}\varepsilon, \\ \sigma_{\theta\theta}^{0(1)} &= 2C_1(\lambda^{(1)} + \mu^{(1)}) + 2C_2\mu^{(1)}/r^2 + \lambda^{(1)}\varepsilon, \\ \varepsilon_{\theta\theta}^{0(1)} &= 2C_1(\lambda^{(1)} + \mu^{(1)}) + 2C_2\mu^{(1)}/r^2 + \lambda^{(1)}\varepsilon, \end{split}$$

Рис. 1

$$C_1 = \frac{(\lambda^{(1)}R_1^2 + \mu^{(1)}R^2)\varepsilon + qR_1^2}{2(\lambda^{(1)} + \mu^{(1)})R_1^2 + 2\mu^{(1)}R^2}, \quad C_2 = \frac{(\mu^{(1)}\varepsilon - q)R^2R_1^2}{2(\lambda^{(1)} + \mu^{(1)})R_1^2 + 2\mu^{(1)}R^2};$$
(6)

в упуговязкопластическом заполнителе

$$\varepsilon_{rr}^{0} = \varepsilon_{\theta\theta}^{0} = -\frac{\varepsilon}{2}, \quad \varepsilon_{zz}^{0} = \varepsilon, \quad (\varepsilon_{zz}^{0})^{p} = -2(\varepsilon_{rr}^{0})^{p}, \quad (\varepsilon_{rr}^{0})^{p} = (\varepsilon_{\theta\theta}^{0})^{p} = \frac{\mu\varepsilon + k/\sqrt{6}}{2\mu + c} \left(\exp\left(-\frac{2\mu + c}{\eta}t\right) - 1 \right),$$

$$\sigma_{rr}^{0} = \sigma_{\theta\theta}^{0} = -\frac{q(2\mu^{(1)} + \lambda^{(1)})R_{1}^{2} + \varepsilon\mu^{(1)}\mu^{(1)}(R_{1}^{2} - R^{2})}{(\lambda^{(1)} + \mu^{(1)})R_{1}^{2} + \mu^{(1)}R^{2}}, \quad (7)$$

$$\sigma_{zz}^{0} = \sigma_{rr}^{0} + 6\mu \left(\frac{\varepsilon}{2} + \varepsilon_{rr}^{0p}\right).$$

В (6), (7)
$$R$$
 — радиус заполнителя, $R_1 = R + 2h$ — внешний радиус оболочки.

Исследование устойчивости основного состояния (6), (7) составной двухслойной оболочки в предположении, что слои работают совместно без проскальзывания и отставания, сводится к решению уравнений равновесия в вариациях [8] для областей оболочки и заполнителя при соответствующих граничных условиях.

Уравнения равновесия для областей упругой оболочки и упруговязкопластического заполнителя имеют вид [8]

$$\nabla_i (\sigma_j^i + \sigma_k^i \nabla^k u_j) - \rho s^2 u_j = 0, \quad s = i\Omega, \quad \Omega = \alpha + i\beta.$$
(8)

Граничные условия на внешнем контуре оболочки запишем в виде

$$(\sigma_j^{i(1)} + \sigma_k^i \nabla^k u_j^{(1)}) N_i^{(1)} = p_j.$$
(9)

При этом в случае «следящей» нагрузки $p_i = p_k^0 \nabla^k u_j$, в случае «мертвой» нагрузки $p_i = 0, N_j^{(1)}$ — орты нормали.

Условия непрерывности компонент тензора напряжений и вектора перемещений на границе контакта оболочки и заполнителя, при r=R имеют вид

$$(\sigma_j^i + \sigma^{0ik} \nabla_i u_j) N_j - (\sigma_j^{i(1)} + \sigma^{0ik(1)} \nabla_k u_j^{(1)}) N_j^{(1)} = 0,$$
(10)

$$u_j^{(1)} - u_j = 0. (11)$$

Линеаризованная связь между значениями амплитуд компонент тензоров напряжений и деформаций для несжимаемой упруговязкопластической среды согласно [6] представима в виде

$$\sigma_j^i = (\alpha_{ik} g^{kk} \nabla_k u_k + p_0) g_j^i + (1 - g_j^i) g^{ii} G_j^i (\nabla_i u_j + \nabla_j u_i),$$
(12)

Научный отдел

для сжимаемой упругой среды согласно [5] — в виде

$$\sigma_j^{i(1)} = \alpha_{ik}^{(1)} g^{kk} \nabla_k u_k^{(1)} g_j^i + (1 - g_j^i) g^{ii} G_j^{i(1)} (\nabla_i u_j^{(1)} + \nabla_j u_i^{(1)}).$$
(13)

В (12), (13) отсутствует суммирование по индексам i и j, p_0 — множитель Лагранжа. Величины α_{ij} , $\alpha_{ij}^{(1)}$, G_i^i , $G_j^{i(1)}$ имеют вид

$$\alpha_{ij}^{(1)} = \lambda^{(1)}\delta_{jj} + 2\mu^{(1)}\delta_{ij}, \quad G_j^{i(1)} = \mu^{(1)}, \quad \alpha_{ij} = 2\mu\delta_{ij} - 3\alpha f_{ii}^0 f_{jj}^0, \tag{14}$$

$$\alpha = \frac{4}{3}\mu^2 [k^2 (2\mu + c - \eta s)]^{-1}, \quad f_{ij}^0 = S_{ij}^0 - c(\varepsilon_{ij}^0)^p, \quad G_j^i = \mu.$$
(15)

К соотношениям (8), (12), (15) для заполнителя следует присоединить условия несжимаемости

$$\nabla_k u^k = 0. \tag{16}$$

Уравнения (8)–(16) представляют собой связную краевую задачу устойчивости относительно амплитуд компонент векторов перемещений $u^{(1)}$, $v^{(1)}$, $w^{(1)}$ и u, v, w, гидростатического давления p соответственно для оболочки и заполнителя. Нетривиальное решение этой задачи соответствует потере устойчивости основного состояния.

Для нахождения собственных значений задачи компоненты вектора перемещений и гидростатическое давление в заполнителе аппроксимируем следующим образом:

$$u = \psi_{n1}(r) \cos n\theta \sin \gamma z, \quad v = \psi_{n2}(r) \sin n\theta \sin \gamma z, \quad w = \psi_{n3}(r) \cos n\theta \cos \gamma z,$$

$$p_0 = P_n(r) \cos n\theta \sin \gamma z, \quad \gamma = m\pi/l.$$
 (17)

Здесь n, m — параметры волнообразования. В оболочке перемещения $u^{(1)}, v^{(1)}, w^{(1)}$ имеют вид (17), где величинам ψ_{ni} (i = 1, 2, 3) следует приписать символ «(1)» вверху. Выбор решения задачи устойчивости в форме (17) предполагает, что заполнитель и оболочка работают совместно без проскальзывания и отставания, и соответствует неосесимметричной форме потери устойчивости.

Подставляя функции u, v, w, p_0 , $u^{(1)}$, $v^{(1)}$, $w^{(1)}$ в линеаризованные уравнения равновесия (8) и учитывая при этом (12)–(16), после ряда преобразований получаем системы обыкновенных дифференциальных уравнений первого порядка: для оболочки

$$dy^{(1)}(r)/dr = C(r)y^{(1)}(r) \qquad (R \le r \le R + 2h);$$
(18)

для заполнителя

$$dy(r)/dr = D(r)y(r) \qquad (r \le R),$$
(19)

где $y^{(1)} = (\psi_{n1}^{(1)}, \psi_{n2}^{(1)}, \psi_{n3}^{(1)}, \psi_{n1}^{(1)'}, \psi_{n2}^{(1)'}, \psi_{n3}^{(1)'}), y = (\psi_{n1}, \psi_{n2}, \psi_{n3}, P_n, \psi_{n1}', \psi_{n2}')$ — векторы, C и D — матрицы шестого порядка. Элементы c_{ij} и d_{ij} матриц C и D, отличные от нуля таковы:

$$c_{14} = c_{25} = c_{36} = 1, \qquad c_{41} = (n^2 (\sigma_{\theta\theta}^{(1)} + \mu^{(1)}) + \gamma^2 r^2 (\sigma_{zz}^{(1)} + \mu^{(1)}) + \sigma_{\theta\theta}^{(1)} + \alpha_{11}^{(1)} - \rho^{(1)} \omega r^2) / r, c_{42} = n(2 \sigma_{\theta\theta}^{(1)} + \mu^{(1)} + \alpha_{11}^{(1)}) / r, \qquad c_{44} = \sigma_{rr}^{(1)} + \alpha_{11}^{(1)} + r \sigma_{rr,r}^{(1)}, \qquad c_{45} = n(\mu^{(1)} + \alpha_{12}^{(1)}), c_{46} = \gamma(\mu^{(1)} + \alpha_{12}^{(1)}) r, \qquad c_{51} = n(2 \sigma_{\theta\theta}^{(1)} + \mu^{(1)} + \alpha_{11}^{(1)}) / r, c_{52} = (n^2 (\sigma_{\theta\theta}^{(1)} + \alpha_{11}^{(1)}) + \gamma^2 r^2 (\sigma_{zz}^{(1)} + \mu^{(1)}) + \sigma_{\theta\theta}^{(1)} + \mu^{(1)} - \rho^{(1)} \omega r^2) / r, \qquad c_{53} = -n\gamma(\mu^{(1)} + \alpha_{12}^{(1)}), \qquad (20)$$

$$c_{55} = \sigma_{rr}^{(1)} + r \sigma_{rr,r}^{(1)} + \mu^{(1)}, \qquad c_{61} = -\gamma(\mu^{(1)} + \alpha_{12}^{(1)}), \qquad c_{62} = -n\gamma(\mu^{(1)} + \alpha_{12}^{(1)}), \\c_{63} = (n^2 (\sigma_{\theta\theta}^{(1)} + \mu^{(1)}) + \gamma^2 r^2 (\sigma_{zz}^{(1)} + \alpha_{11}^{(1)}) - \rho^{(1)} \omega r^2) / r, \\c_{64} = -\gamma(\mu^{(1)} + \alpha_{12}^{(1)}) r, \qquad c_{66} = \sigma_{rr}^{(1)} + r \sigma_{rr,r}^{(1)} + \mu^{(1)};$$

Механика

$$d_{14} = d_{25} = d_{36} = 1, \qquad d_{41} = (n^2(\sigma_{\theta\theta}^0 + \mu) + \gamma^2 r^2(\sigma_{zz}^0 + \mu) + \sigma_{\theta\theta}^0 - \sigma_{rr}^0 + \sigma_{rr,r}^0 - \rho\omega r^2)/r^2, d_{42} = n(2\sigma_{\theta\theta}^0 + \mu - \sigma_{rr}^0 + r\sigma_{rr,r}^0)/r^2, \qquad d_{43} = -\gamma\sigma_{rr,r}^0, \qquad d_{45} = n(\alpha_{11} - \alpha_{12} - \mu - \sigma_{rr}^0)/r, d_{46} = \gamma(\alpha_{23} - \alpha_{11} + \mu - \sigma_{rr}^0), \qquad d_{51} = n(2\sigma_{\theta\theta}^0 + \alpha_{11} - \alpha_{12})/r, d_{52} = (n^2(\sigma_{\theta\theta}^0 - \mu + \alpha_{11} - \alpha_{12}) + \gamma^2 r^2(\sigma_{zz}^0 + \mu) + \sigma_{\theta\theta}^0 + \mu - \rho\omega r^2)/r, d_{53} = n\gamma(\alpha_{12} - \alpha_{23}), \qquad d_{54} = n, \qquad d_{55} = \mu + \sigma_{rr}^0 + r\sigma_{rr,r}^0, d_{63} = (n^2(\sigma_{\theta\theta}^0 + \mu) + \gamma^2 r^2(\sigma_{zz}^0 - \mu + \alpha_{33} - \alpha_{23}) - \rho\omega r^2)/r^2, \qquad d_{64} = \gamma.$$

Коэффициенты c_{ij} для i = 4 надо поделить на $r(\sigma_{rr}^{(1)} + \alpha_{11}^{(1)})$, а для i = 5, 6 — на $r(\sigma_{rr}^{(1)} + \mu^{(1)})$. Аналогично d_{ij} для i = 5, 6 надо поделить на $r(\sigma_{rr} + \mu)$. При этом для сжимаемой упругой оболочки

$$\alpha_{11}^{(1)} = \alpha_{22}^{(1)} = \alpha_{33}^{(1)} = 2\mu^{(1)} + \lambda^{(1)}, \qquad \alpha_{12}^{(1)} = \alpha_{21}^{(1)} = \alpha_{13}^{(1)} = \alpha_{23}^{(1)} = \alpha_{31}^{(1)} = \alpha_{32}^{(1)} = \lambda^{(1)}, \tag{22}$$

а для упруговязкопластического заполнителя

$$\alpha_{11} = \alpha_{22} = 2\mu - \frac{\alpha k^2}{2}, \quad \alpha_{33} = 2\mu - 2\alpha k^2, \quad \alpha_{12} = \alpha_{21} = -\frac{\alpha k^2}{2}, \quad \alpha_{13} = \alpha_{23} = \alpha_{31} = \alpha_{32} = \alpha k^2.$$
(23)

Граничные условия (9) и (11) с учетом (12)–(16) запишутся в виде – условия контакта при r = R:

$$\begin{pmatrix} \sigma_{rr}^{0} + \alpha_{11} \end{pmatrix} \Psi_{n1}' + \alpha_{12} \Psi_{n1}/r + \alpha_{12} \Psi_{n2}/r - \gamma \alpha_{13} \Psi_{n3} + P_{n} = \\ = \begin{pmatrix} \sigma_{rr}^{(1)} + \alpha_{11}^{(1)} \end{pmatrix} \Psi_{n1}^{(1)'} + \alpha_{12}^{(1)} \Psi_{n1}^{(1)}/r + \alpha_{12}^{(1)} \Psi_{n2}^{(1)}/r - \gamma \alpha_{13}^{(1)} \Psi_{n3}^{(1)}, \\ 0 \\ r(\sigma_{rr}^{0} + \mu) \Psi_{n2}' - n\mu \Psi_{n1} - \mu \Psi_{n2} = r(\sigma_{rr}^{(1)} + \mu^{(1)}) \Psi_{n1}^{(1)'} - n\mu^{(1)} \Psi_{n1}^{(1)} - \mu^{(1)} \Psi_{n2}^{(1)}, \\ (\sigma_{rr}^{0} + \mu) \Psi_{n3}' + \gamma \mu \Psi_{n1} = (\sigma_{rr}^{(1)} + \mu^{(1)}) \Psi_{n1}^{(1)'} + \gamma \mu^{(1)} \Psi_{n1}^{(1)}, \quad u = u^{(1)}, \quad v = v^{(1)}, \quad w = w^{(1)};$$

– условия на поверхности при $r = R_1$:

$$\begin{aligned} & \begin{pmatrix} 0 \\ (\sigma_{rr}^{(1)} + \alpha_{11}^{(1)}) \Psi_{n1}^{(1)'} + \alpha_{12}^{(1)} \Psi_{n1}^{(1)} / r + \alpha_{12}^{(1)} \Psi_{n2}^{(1)} / r - \gamma \alpha_{13}^{(1)} \Psi_{n3}^{(1)} = 0, \\ & & \\ & r (\sigma_{rr}^{(1)} + \mu^{(1)}) \Psi_{n1}^{(1)'} - n \mu^{(1)} \Psi_{n1}^{(1)} - \mu^{(1)} \Psi_{n2}^{(1)} = 0, \\ & & \\ & & \\ & & \\ & & (\sigma_{rr}^{(1)} + \mu^{(1)}) \Psi_{n1}^{(1)'} + \gamma \mu^{(1)} \Psi_{n1}^{(1)} = 0. \end{aligned}$$

$$(25)$$

Поскольку точное аналитическое решение краевой задачи (18)–(25) найти не удается, будем искать приближенное решение методом конечных разностей [9]. В результате получаем однородную систему линейных алгебраических уравнений, которую можно представить в матричной форме $(X_{ij})(Y_i) = 0.0$ тсюда следует, что определение критического значения параметра нагружения q_* сводится к разрешимости матричного уравнения

$$\det(X_{ij}) = 0. \tag{26}$$

При вычислении определителя необходимо учитывать соотношения (6), (7), описывающие напряженно деформируемое докритическое состояние. Минимизация должна проводиться по шагу разностной сетки β , параметрам волнообразования по контуру m и образующей n, параметрам материала оболочки и заполнителя λ_j и величине $s = i\Omega$. Таким образом, получаем задачу многомерной оптимизации величины q в зависимости от s, m, n при условии

$$\Phi = \det(X_{ij}(q, s, m, n, \lambda_j)) = 0.$$
⁽²⁷⁾

Задача определения критической нагрузки q_* при фиксированных значениях β и параметрах λ_j может быть решена в два этапа. На первом этапе необходимо определить область в пространстве параметров q, s, m, n, в которой происходит смена знака функции $\Phi(q, s, m, n, \beta, \lambda_j)$, $0 \le s < \infty$,

m, n = 1, 2..., на втором согласно (26)) вычисляется значение $q_* = \min_{s,m,n} q(s,m,n)$, при котором $\Phi(q_*, s_*, m_*, n_*, \beta, \lambda_j) = 0$. Оптимизацию по параметру β проводить необходимо следующим образом. Вычисление критической нагрузки прекращается, если после уменьшения шага разностной сетки в два раза получаемые значения нагрузки отличаются друг от друга с заданной точностью.

Численный счет проводился для безразмерных величин, при этом все величины, имеющие размерность напряжений, относились к модулю сдвига $\mu^{(1)}$ для упругого материала оболочки, а величины, имеющие размерность длины, — к радиусу заполнителя R.

На рис. 2, 3 показаны зависимости величины критической нагрузки q_* от толщины упругой оболочки $(R_1 - R)$ при различных значениях коэффициентов вязкости и упрочнения, которым соответствуют значения параметров волнообразования m = n = 3.

На рис. 2 кривая 1 соответствует коэффициенту упрочнения с = 0.0005, кривая 2 – с = 0.01, кривая 3 – с = 0.2. При этом коэффициент вязкости материала заполнителя η = 0.2. На рис. 3 кривая 1 соответствует η = 0.001, кривая 2 – η = 0.01, кривая 3 – η = 0.1. При этом коэффициент упрочнения с = 0.2. Для обоих рисунков ε = 0.07, μ = 0.8, $\lambda^{(1)}$ = 24, к = 0.07, l = 1000.

Из анализа результатов численного счета следует, что

 при увеличении толщины упругого слоя оболочки значение критической нагрузки q_{*} увеличивается (см. рис. 1, 2);

с ростом коэффициентов упрочнения с и вязкости η область устойчивости увеличивается.

Библиографический список

 Ильюшин А. А. Пластичность. Основы общей математической теории. М.: Изд-во АН СССР, 1963. 271 с.
 Гузь А. Н. Основы трехмерной теории устойчивости деформируемых тел. Киев: Вища школа, 1986. 511 с.
 Бабич И. Ю., Черевко М. А. Устойчивость цилиндри-

ческих оболочек с упругопластическим заполнителем при осевом сжатии // Прикл. механика. 1984. Т. 20, № 3. С. 60–64.

4. Быковцев Г. И., Ивлев Д. Д. Теория пластичности. Владивосток: Дальнаука, 1998. 528 с.

5. *Ишлинский А.Ю., Ивлев Д. Д.* Математическая теория пластичности. М.: Физматлит, 2001. 704 с.

6. Спорыхин А. Н. Метод возмущений в задачах устойчивости сложных сред. Воронеж: Изд-во Воронеж. унта, 1997. 359 с.

7. Новожилов В.В. Теория упругости. Л.: Судпромгиз, 1958. 370 с.

8. Спорыхин А. Н., Шашкин А. И. Устойчивость равновесия пространственных тел и задачи механики горных пород. М.: Физматлит, 2004. 232 с.

9. Корнишин М. С. Нелинейные задачи теории пластин и пологих оболочек и методы их решения. М.: Наука, 1964. 192 с.