

Замечание 6. Предложения 1–7 и замечания 1–5 позволяют также дать описание полей, исчерпывающих класс

$$C^{(1)}(R^3, \mathfrak{T}_{\text{uas}}(R^3 \backslash D), \mathfrak{L}_{\text{uas}}(D)) \tag{75}$$

единичных аксиально симметричных векторных полей, гладких в R^3 , но с разными в смежных областях вихревыми свойствами, а именно потенциальных (следуя [4], потенциальные в G поля относим к классу $\mathfrak{T}(G)$ поперечно вихревых полей) в $R^3\backslash D$ и продольно вихревых в D, где область D определяется формулой (30), $R^3\backslash D$ — прямой круговой цилиндр радиуса ρ_0 , ось которого совпадает с осью симметрии поля. Вид этих полей определяется формулами (51), (50), если функции $\psi(\rho)$, $\varphi(\rho)$ подчиняются условиям (20) предложения 3 и условиям предложений 4, 7. Зависимость переменной ρ от переменных r,z при $r\in [0,\rho_0]$ имеет вид $\rho(r,z)=r$ (см. (39)), а при $r>\rho_0$ определяется неявно уравнением (32). Ротор и дивергенция полей из (75) выражаются формулами (59)–(63). Из этих формул и из конструкции класса (75) следует, что (75) исчерпывает класс всех аксиально симметричных решений системы уравнений:

$$rot\beta = 0 \quad B \quad R^3 \setminus D, \qquad [\beta, rot\beta] = 0 \quad B \quad D, \qquad |\beta| = 1 \quad B \quad R^3$$
 (76)

при условиях $\beta \in C^{(1)}(R^3)$, ${\rm rot}\beta \neq 0$ п. в. в D. Постановку задачи об интегрировании системы (76) можно рассматривать как распространение задачи (72) Громеки на случай разнородных по вихревым свойствам гладких векторных полей.

Работа выполнена при финансовой поддержке РФФИ (проекты 09-01-00014, 08-01-00213, 08-01-00320) и гранта для государственной поддержки ведущих научных школ РФ (проект HIII-1071.2008.1).

Библиографический список

- 1. Верещагин В.П., Субботин Ю.Н., Черных Н.И. К построению единичных продольно вихревых векторных полей с помощью гладких отображений // Тр. Ин-та математики и механики УрО РАН. 2008. Т. 14, № 3. С. 82–91
- 2. Верещагин В.П., Субботин Ю.Н., Черных Н.И. Продольно вихревые единичные векторные поля из класса аксиально симметричных полей // Тр. Ин-та математи-

ки и механики УрО РАН. 2008. Т. 14, № 3. С. 92-98.

- 3. *Громека И.С.* Собрание сочинений. М.: Из-во АН СССР, 1952. 296 с.
- 4. Верещагин В.П., Субботин Ю.Н., Черных Н.И. Преобразование, изменяющее геометрическое строение векторного поля // Тр. Ин-та математики и механики УрО РАН. 2009. Т. 15, № 1. С. 111–121.

УДК 517.984

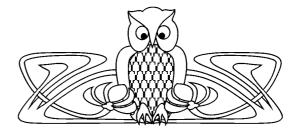
О СПЕКТРАЛЬНОСТИ МАТРИЧНЫХ ОПЕРАТОРОВ В БАНАХОВОМ ПРОСТРАНСТВЕ

М.И. Исмайлов

Бакинский государственный университет, кафедра теории функций и функционального анализа E-mail: miqdadismailov@rambler.ru

Работа посвящена исследованию спектральности матричных операторов в банаховом пространстве. Ведется исследование спектральных свойств некоторого матричного оператора, получаемого при линеаризации полиномиального операторного пучка.

Ключевые слова: спектральная мера, разложение единицы, спектральный оператор, матричный оператор, полиномиальный операторный пучок.



On Spectral Property of Matrix Operators in Banach Space M.I. Ismailov

Baku State University,

Chair of Theory of Function and Functional Analysis E-mail: miqdadismailov@mail.ru

The paper is covers to the investigation of spectral property of matrix operators in Banach space. One matrix operator obtained on linearization of a polynomial operator bundle is being searched resolution of identity for its spectral properties.

Key words: spectral measure, unit expansion, spectral operator, matrix operator, polynomial operator bundle.

(С) М.И. Исмайлов, 2009

Известно, что нормальные операторы обладают счётно-аддитивным спектральным разложением на борелевских подмножествах комплексной плоскости. Одной из важных задач теории операторов является изучение класса операторов, спектральные свойства которых аналогичны спектральным свойствам нормальных операторов. К таким классам относится класс спектральных операторов, изученный Н. Данфордом и его сотрудниками. Известны труды (напр., [1–6]) многих математиков, работавших в этом направлении.

Большое количество задач теории обыкновенных дифференциальных уравнений, уравнений с частными производными и математической физики требуют в соответствующих пространствах исследования спектральных свойств матричных операторов, т.е. оператор-матриц, элементы которых сами являются некоторыми операторами. Поэтому представляет интерес изучение спектральных свойств матричных операторов. Известно, что спектральность матричных операторов с коммутативными матричными элементами была изучена Н. Данфордом [1] в гильбертовом пространстве, где рассматриваются спектральные матричные операторы конечного типа. В отличие от [1] в данной работе вопрос спектральности матричного оператора изучается в банаховом пространстве, вообще говоря, с некоммутативными элементами, а также устанавливаются соотношения между спектром матричного оператора и спектрами его элементов. Эти результаты при n=2 получены в работах [7, 8].

1. СПЕКТРАЛЬНОСТЬ МАТРИЧНОГО ОПЕРАТОРА

Пусть X — банахово пространство, $X^n = X \times X \times \ldots \times X$ — прямое произведение n экземпляров пространства X. Пусть \tilde{A} — линейный ограниченный оператор, действующий в X^n . Тогда очевидно, что \tilde{A} задается некоторой матрицей $\tilde{A} = (A_{ij})_{i,j=1}^n$, где A_{ij} $(i,j=1,\ldots,n)$ — линейные ограниченные операторы в X. Норму оператора \tilde{A} можно определить как $\|\tilde{A}\| = \sup_{1 \leq i,j \leq n} \|A_{ij}\|$.

Теорема 1. Пусть A_{ij} $(i \neq j)$ — коммутирующие квазинильпотентные операторы, A_{ii} — спектральные операторы, кроме того, $A_{ii}A_{ij} = A_{ij}A_{jj}$. Тогда оператор \tilde{A} спектрален c разложением единицы $\tilde{E}(\cdot) = (E_{ij})_{i,j=1}^n$, где E_{ij} — разложение единицы A_{ij} , причем спектр $\sigma(\tilde{A})$ оператора \tilde{A} определяется равенством $\sigma(\tilde{A}) = \bigcup_{i=1}^n \sigma(A_{ii})$.

Доказательство. Представим оператор \tilde{A} в виде суммы операторов:

$$\tilde{A} = \begin{pmatrix} A_{11} & 0 & \dots & 0 \\ 0 & A_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{nn} \end{pmatrix} + \begin{pmatrix} 0 & A_{12} & \dots & A_{1n} \\ A_{21} & 0 & \dots & A_{2n} \\ \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & 0 \end{pmatrix} = \tilde{A}_1 + \tilde{A}_2.$$

Покажем, что оператор \tilde{A}_1 является спектральным оператором с разложением единицы $\tilde{E}(\cdot)==(E_{ij})_{i,j=1}^n$. Очевидно, что $\tilde{E}(\cdot)$ является спектральной мерой и для любого борелевского множества σ , сужение $\tilde{A}_{1\sigma}$ оператора \tilde{A}_1 на подпространство $\tilde{E}(\cdot)X^n$ определяется матрицей $\tilde{A}_{1\sigma}=(\delta_{ij}A_{ij\sigma})_{i,j=1}^n$, где $A_{ij\sigma}$ — сужение оператора A_{ij} на подпространство $E_{ij}X$, а δ_{ij} — символ Кронекера. Тогда, легко показать, что $\sigma(\tilde{A}_{1\sigma})=\bigcup_{i=1}^n\sigma(A_{ii\sigma})$, в частности $\sigma(\tilde{A}_1)=\bigcup_{i=1}^n\sigma(A_{ii})$. В силу того, что A_{ii} являются спектральными, для любого борелевского множества $\sigma\in\Sigma$ имеет место включение $\sigma(A_{ii\sigma})\subseteq\bar{\sigma}$, значит, $\sigma(\tilde{A}_{1\sigma})\subseteq\bar{\sigma}$, $A_{ij}\in\Sigma$. Так как операторы A_{ij} коммутируют с операторами E_{ij} , то легко показать, что оператор \tilde{A}_1 коммутирует с оператором $\tilde{E}(\cdot)$ и, следовательно, оператор \tilde{A}_1 спектрален с разложением единицы $\tilde{E}(\cdot)$.

Теперь рассмотрим оператор \tilde{A}_2 . В силу перестановочности и квазинильпотентности операторов A_{ij} $(i \neq j)$, учитывая указанное определение нормы матричного оператора, легко показать квазинильпотентность оператора \tilde{A}_2 . Далее покажем, что оператор \tilde{A}_2 перестановочен с оператором \tilde{A}_1 . Имеем

$$\tilde{A}_{1}\tilde{A}_{2} = \begin{pmatrix} 0 & A_{11}A_{12} & \dots & A_{11}A_{1n} \\ A_{22}A_{21} & 0 & \dots & A_{22}A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{nn}A_{n1} & A_{nn}A_{n2} & \dots & 0 \end{pmatrix} = \begin{pmatrix} 0 & A_{12}A_{22} & \dots & A_{1n}A_{nn} \\ A_{21}A_{11} & 0 & \dots & A_{2n}A_{nn} \\ \dots & \dots & \dots & \dots \\ A_{n1}A_{11} & A_{n2}A_{22} & \dots & 0 \end{pmatrix} = \tilde{A}_{2}\tilde{A}_{1}.$$

24 Научный отдел

Таким образом, оператор $ilde{A}$ спектрален, поскольку он представим в виде суммы спектрального оператора \hat{A}_1 и перестановочного с ним квазинильпотентного оператора \hat{A}_2 .

Так как оператор \tilde{A}_2 квазинильпотентен, тогда $\sigma(\tilde{A}) = \sigma(\tilde{A}_1)$, тем самым $\sigma(\tilde{A}) = \bigcup_{i=1}^n \sigma(A_{ii})$. Теорема доказана.

Определим операторы $A_{n+1i} = A_{1i}$ и $A_{in+1} = A_{i1}$, $i = 1, \dots, n$.

Теорема 2. Пусть A_{ij} $(i,j=1,\ldots,n,\ i\neq j+1)$ — коммутирующие квазинильпотентные операторы, а операторы A_{i+1i} попарно коммутируют, причем оператор $A = A_{21}A_{32}\cdots A_{1n}$ спектрален, точка нуль является изолированной точкой спектра $\sigma(A)$ или оператор A ограниченно обратим. Пусть, кроме того, выполнено соотношение $A_{i+1}A_{ij} = A_{i+1}A_{j+1}A_{j+1}$, j, i = 1, ..., n.

Тогда оператор $ilde{A}$ спектрален и $\sigma(ilde{A})=h(\sigma(A))$, где h(z) — одна из аналитических в спектре $\sigma(A)$ однозначных ветвей функции $\sqrt[n]{z}$.

Доказательство. Представим оператор \tilde{A} в виде суммы операторов:

$$\tilde{A} = \begin{pmatrix} 0 & \dots & 0 & A_{1n} \\ A_{21} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & A_{nn-1} & 0 \end{pmatrix} + \begin{pmatrix} A_{11} & A_{12} & \dots & 0 \\ 0 & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix} = \tilde{A}_1 + \tilde{A}_2.$$

Рассмотрим оператор \tilde{A}_1 . Очевидно, что $\tilde{A}_1^n=(\delta_{ij}A)_{i,j=1}^n$, где $A=\prod\limits_{i=1}^nA_{i+1i}$. Так как оператор Aспектрален, то оператор \tilde{A}_1^n также спектрален и $\sigma(\tilde{A}_1^n)=\sigma(A)$. Из условий теоремы оператор \tilde{A}_1^n ограниченно обратим или спектр $\sigma(\tilde{A}_1^n)$ содержит точку нуль как изолированную, тогда в силу [3] или [4] получаем, что оператор \tilde{A}_1 спектрален и согласно теореме об отображении спектра $\sigma(\tilde{A}_1) = h(\sigma(\tilde{A}_1^n))$.

Теперь рассмотрим оператор $ilde{A}_2$. Так как в силу условия теоремы операторы $ilde{A}_{ij}$ $(i,j=1,\ldots,n,n)$ $i \neq j+1$) коммутируют и квазинильпотентны, то легко показать, что оператор $ilde{A}_2$ квазинильпотентен. Покажем, что операторы $ilde{A}_1$ и $ilde{A}_2$ коммутируют. Имеем

$$\tilde{A}_{1}\tilde{A}_{2} = \begin{pmatrix} A_{1n}A_{n1} & \dots & A_{1n}A_{nn-2} & 0 & A_{1n}A_{nn} \\ A_{21}A_{11} & \dots & A_{21}A_{1n-1} & A_{21}A_{1n-1} & 0 \\ 0 & \dots & A_{32}A_{2n-2} & A_{32}A_{2n-1} & A_{32}A_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ A_{nn-1} & \dots & 0 & A_{nn-1}A_{n-1n-1} & A_{nn-1}A_{n-1n} \end{pmatrix} = \begin{pmatrix} A_{12}A_{21} & \dots & A_{1n-1}A_{n-1n-2} & 0 & A_{11}A_{1n} \\ A_{22}A_{21} & \dots & A_{2n-1}A_{n-1n-2} & A_{2n}A_{nn-1} & 0 \\ 0 & \dots & A_{3n-1}A_{n-1n-2} & A_{3n-1}A_{nn-1} & A_{31}A_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ A_{n2}A_{21} & \dots & 0 & A_{nn}A_{nn-1} & A_{n1}A_{1n} \end{pmatrix} = \tilde{A}_{2}\tilde{A}_{1}.$$

Следовательно, оператор $ilde{A}$ спектрален, поскольку он представим в виде суммы спектрального оператора $ilde{A}_1$ и перестановочного с ним квазинильпотентного оператора $ilde{A}_2$, причем в силу того что $\sigma(A) = \sigma(A_1)$, имеем $\sigma(A) = h(\sigma(A))$. Теорема доказана.

В дальнейшем, говоря об определителе матричного оператора, будем понимать оператор, составленный из матричных элементов с помощью действий нахождения определителя числовой матрицы.

Обозначим через $\left| \tilde{A}_k \ \frac{j_1 j_2, \dots, j_k}{i_1 i_2, \dots, i_k} \right|$ — минор k-го порядка оператор-матрицы \tilde{A} , составленный из строк

с номерами i_1, i_2, \ldots, i_k и столбцов с номерами j_1, j_2, \ldots, j_k , а через A — оператор $A = \sum\limits_{i=1}^n A_{ii}$. **Теорема 3.** Пусть операторы A_{ij} коммутируют, $\left| \tilde{A}_k \, \frac{i_1 i_2, \ldots, i_k}{i_1 i_2, \ldots, i_k} \, \right| = 0 \,\, (2 \leq k \leq n), \,\, 0 \in \sigma(A)$.

Tогда $\sigma(\tilde{A})=\sigma(A)$, кроме того, если A — спектральный оператор, то \tilde{A} является спектральным оператором с разложением единицы $\tilde{E}(\cdot) = (\delta_{ij}E(\cdot))_{i,j=1}^n$, где $E(\cdot)$ — разложение единицы onepamopa A.

Математика 25

Доказательство. Очевидно, что для любых оператор-матриц \tilde{C} и \tilde{D} справедливо $|\tilde{C}||\tilde{B}|=|\tilde{C}\tilde{B}|$. Тогда в силу того что $|\tilde{A}|=0$, ясно, что $0\in\sigma(\tilde{A})$.

Пусть $\lambda \neq 0$. Рассмотрим оператор $\tilde{A} - \lambda \tilde{I}$, где \tilde{I} — единичный оператор в X^n . Легко показать, что $|\tilde{A} - \lambda \tilde{I}| = (-1)^n (\lambda^n I - \lambda^{n-1} A)$. Пусть $\lambda \in \rho(\tilde{A})$. Обозначим через $R_{\lambda}(\tilde{A})$ оператор $(\tilde{A} - \lambda \tilde{I})^{-1}$. Имеем $|\tilde{A} - \lambda \tilde{I}| |R_{\lambda}(\tilde{A})| = |\tilde{I}| = I$, отсюда $(-1)^n (\lambda^n I - \lambda^{n-1} A) |R_{\lambda}(\tilde{A})| = I$. Следовательно, $\lambda \in \rho(A)$. Обратно, пусть $\lambda \in \rho(A)$. Рассмотрим оператор-матрицу

$$R_{\lambda}(\tilde{A}) = \begin{pmatrix} B_{11}R_{\lambda}(A) & B_{21}R_{\lambda}(A) & \dots & B_{n1}R_{\lambda}(A) \\ B_{12}R_{\lambda}(A) & B_{22}R_{\lambda}(A) & \dots & B_{n2}R_{\lambda}(A) \\ \dots & \dots & \dots & \dots \\ B_{1n}R_{\lambda}(A) & B_{2n}R_{\lambda}(A) & \dots & B_{nn}R_{\lambda}(A) \end{pmatrix},$$

где B_{ij} — алгебраическое дополнение $A_{ij} - \lambda \delta_{ij}I$, $R_{\lambda}(A) = (-1)^n (\lambda^n I - \lambda^{n-1}A)^{-1}$. Тогда, очевидно, что $(\tilde{A} - \lambda \tilde{I})R_{\lambda}(\tilde{A}) = \tilde{I}$, т.е. $\lambda \in \rho(\tilde{A})$. Таким образом, $\sigma(\tilde{A}) = \sigma(A)$.

Покажем, что оператор \tilde{A} является спектральным. Пусть A — спектральный оператор с разложением единицы $\tilde{E}(\cdot)$. Так как оператор $E(\cdot)$ коммутирует с каждым из операторов A_{ij} , то очевидно, что $\tilde{E}(\cdot)$ коммутирует с \tilde{A} и является счетно-аддитивной спектральной мерой. В то же время, аналогично сказанному, можно показать, что при любом борелевском подмножестве σ комплексной плоскости спектры $\sigma(\tilde{A}_{\sigma})$ и $\sigma(A_{\sigma})$ равны, где \tilde{A}_{σ} и A_{σ} сужения соответственно операторов \tilde{A} и A на подпространства $\tilde{E}(\cdot)X^n$ и $E(\cdot)X$. Тогда поскольку оператор A спектрален, то $\sigma(A_{\sigma})\subseteq \bar{\sigma}$, значит, $\sigma(\tilde{A}_{\sigma})\subseteq \bar{\sigma}$. Теорема доказана.

2. ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ СВОЙСТВ НЕКОТОРОГО МАТРИЧНОГО ОПЕРАТОРА

Перейдем к изучению спектральности матричного оператора, получаемого при линеаризации полиномиального операторного пучка:

$$L(\lambda) = I - A_0 - \lambda A_1 - \lambda^2 A_2 - \dots - \lambda^n A_n,$$

где A_i $(i=0,1,\ldots,n)$ — линейные ограниченные операторы в X, I — тождественный оператор в X. А именно известно, что при линеаризации указанного пучка в пространстве X^n приходится рассматривать операторный пучок вида $\tilde{L}(\lambda)=\tilde{I}-\tilde{B}_0-\lambda\tilde{B}_1$, где

$$\tilde{B}_0 = \begin{pmatrix} A_0 & A_1 & \dots & A_{n-1} \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \qquad \tilde{B}_1 = \begin{pmatrix} 0 & 0 & \dots & 0 & A_n \\ I & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & I & 0 \end{pmatrix}.$$

Предположим, что оператор $I-A_0$ ограниченно обратим, тогда вместо указанного пучка удобно рассматривать пучок вида $\tilde{L}_1(\lambda)=\tilde{I}-\lambda \tilde{C}$, где

$$\tilde{C} = \begin{pmatrix} (I - A_0)^{-1} A_1 & (I - A_0)^{-1} A_2 & \dots & \dots & (I - A_0)^{-1} A_n \\ I & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & I & 0 \end{pmatrix}.$$

Прежде чем изучить спектральные свойства оператора \tilde{C} , установим некоторые спектральные связи операторов \tilde{B}_1 и A_n .

Теорема 4. Пусть A_n — ограниченно обратимый оператор. Оператор A_n является спектральным оператором c разложением единицы $E(\cdot)$ тогда и только тогда, когда оператор \tilde{B}_1 является спектральным оператором c разложением единицы $\tilde{E}_1(\cdot) = (\delta_{ij}E_1(\cdot))_{i,j=1}^n$, где $E_1(\cdot) = (h(\cdot))$, а h(z) — некоторая однозначная аналитическая ветвь функции $\sqrt[n]{z}$, причем $\sigma_p(\tilde{B}_1) = h(\sigma_p(A_n))$, $\sigma_c(\tilde{B}_1) = h(\sigma_c(A_n))$, $\sigma_r(\tilde{B}_1) = h(\sigma_r(A_n))$.

Доказательство. Heoбxoдимость. Пусть A_n ограниченно обратимый спектральный оператор с разложением единицы $E(\cdot)$. Рассмотрим оператор \tilde{B}_1^n . Очевидно, что $\tilde{B}_1^n = (\delta_{ij}A_n)_{i,j=1}^n$. Поскольку

26 Научный отдел

операторы \tilde{B}_1^n и A_n имеют аналогичные свойства, то \tilde{B}_1^n — ограниченно обратимый спектральный оператор с разложением единицы $\tilde{E}(\cdot) = (\delta_{ij}E(\cdot))_{i,j=1}^n$, причем $\sigma(\tilde{B}_1^n) = \sigma(A_n)$. Тогда согласно работам [3] или [4] оператор \tilde{B}_1 спектрален и имеет разложение единицы $\tilde{E}_1(\cdot)$.

Достаточность. Пусть оператор A_n ограниченно обратим, а оператор \tilde{B}_1 спектрален с разложением единицы $\tilde{E}_1(\cdot)$. Покажем, что оператор A_n спектрален с разложением единицы $E_1(\cdot)$, где $E_1(\cdot)=E(h(\cdot))$. Рассмотрим оператор \tilde{B}_1^n . Ясно, что \tilde{B}_1^n спектральный оператор с некоторым разложением единицы $\tilde{E}(\cdot)$, определяемый матрицей $\tilde{E}(\cdot)=(E_{ij}(\cdot))_{i,j=1}^n$.

Покажем, что $E_{ij}(\cdot)=0$ $(i\neq j)$, $E_{ii}(\cdot)=E(\cdot)$. Для этого рассмотрим операторы: \tilde{I}_{ij} — оператор, в котором $A_{ij}=\tilde{I}$, а все остальные равны нулю, \tilde{I}_i — оператор, в котором в первой строке i-й элемент I, а остальные — 0, во второй строке i+1-й элемент I, а остальные — 0 и т.д., \tilde{J} — матричный оператор, в котором элементы побочной диагонали, — единичные операторы, а остальные — нулевые операторы.

Очевидно, что оператор \tilde{B}_1^n коммутирует с каждым из операторов \tilde{I}_{ij} , \tilde{I}_i и \tilde{J} . Поскольку разложение единицы спектрального оператора коммутирует с каждым оператором, коммутирующим со спектральным оператором, то оператор $\tilde{E}(\cdot)$ коммутирует с операторами \tilde{I}_{ij} , \tilde{I}_i и \tilde{I}_{11} . Далее легко показать, что из равенств $\tilde{E}(\cdot)\tilde{I}_{ij}=\tilde{I}_{ij}\tilde{E}(\cdot)$, $\tilde{E}(\cdot)\tilde{I}_i=\tilde{I}_i\tilde{E}(\cdot)$, $\tilde{E}(\cdot)\tilde{J}=\tilde{J}\tilde{E}(\cdot)$ получается, что $E_{ij}(\cdot)=0$ ($i\neq j$), $E_{ii}(\cdot)=E(\cdot)$. В силу того что $\tilde{E}(\cdot)$ — спектральная мера, очевидно, спектральной мерой будет и оператор $E(\cdot)$. Покажем, что $E(\cdot)$ — разложение единицы оператора A_n . Так как $\tilde{B}_1^n\tilde{E}(\cdot)=\tilde{E}(\cdot)\tilde{B}_1^n$, то $A_nE(\cdot)=E(\cdot)A_n$. Пусть σ — произвольное борелевское подмножество комплексной плоскости. Ясно, что $\sigma((\tilde{B}_1^n)_\sigma)=\sigma((A_n)_\sigma)$, где $(\tilde{B}_1^n)_\sigma$, $(A_n)_\sigma$ — сужения соответственно операторов \tilde{B}_1^n и A_n на соответствующие подпространства $\tilde{E}(\cdot)X^n$, $E(\cdot)X$. Следовательно, поскольку $\sigma((\tilde{B}_1^n)_\sigma)\subseteq\bar{\sigma}$, то $\sigma((A_n)_\sigma)\subseteq\bar{\sigma}$ и оператор A_n спектрален с разложением единицы $E(\cdot)$.

Теперь докажем вторую часть теоремы. Пусть $\lambda \in \sigma_p(\tilde{B}_1)$. Так как $\sigma(\tilde{B}_1^n) = \sigma(A_n)$, то в силу ограниченной обратимости A_n , ясно, что $\sigma(\tilde{B}_1) = h(\sigma(A_n))$ тогда и только тогда, когда операторы $\tilde{B}_1 - \lambda \tilde{I}$ и $A_n - \lambda^n I$ взаимно однозначны. Следовательно, $\lambda^n \in \sigma_p(A_n)$.

Обратно, пусть $\lambda \in \sigma_r(\tilde{B}_1)$. Тогда существует ненулевой $\tilde{f}=(f_1,f_2,\ldots,f_n)\in (X^*)^n$, такой что $\tilde{f}((\tilde{B}_1-\lambda \tilde{I})\tilde{x})=0,\ \tilde{x}\in X^n$. Переходя к координатам, получим

$$0 = (f_1, f_2, \dots, f_n) \begin{pmatrix} A_n x_n - \lambda x_1 \\ x_1 - \lambda x_2 \\ \dots \\ x_{n-1} - \lambda x_n \end{pmatrix} = f_1(A_n x_n - \lambda x_1) + f_2(x_1 - \lambda x_2) + \dots + f_n(x_{n-1} - \lambda x_n).$$

Покажем, что функционал f_1 ненулевой. В самом деле, если $f_1=0$, то выбирая вектор $\tilde{x}_j\in X^n$ $(j=1,\ldots,n-1)$, так чтобы $x_i=\lambda x_{i+1}$ $(i=1,\ldots,n-1,i\neq j)$, из последнего соотношения получаем

$$f_{i+1}(x_i - \lambda x_{i+1}) = 0, \quad j = 1, \dots, n-1.$$

Так как вектора x_j и x_{j+1} произвольны, то $f_{j+1}=0$, значит, $\tilde{f}=\tilde{0}$, что приводит к противоречию предположения. Следовательно, функционал f_1 ненулевой. Тогда, подобрав вектор $\tilde{x}\in X^n$ так, чтобы $x_i=\lambda x_{i+1}$ $(i=1,\ldots,n-1)$, получаем

$$0 = f_1(A_n x_n - \lambda x_1) + f_2(x_1 - \lambda x_2) + \dots + f_n(x_{n-1} - \lambda x_n) = f_1(A_n x_n - \lambda^n x_n).$$

Отсюда в силу произвольности элемента $x_n \in X$ получаем, что $\lambda^n \in \sigma_r(A_n)$. Обратно, пусть $\lambda^n \in \sigma_r(A_n)$. Тогда существует ненулевой функционал f_1 , такой что $f_1(A_nx_1-\lambda^nx_1)=0, x_1\in X$. Рассмотрим в пространстве X^n функционал $\tilde{f}=(f_1,f_2,\ldots,f_n)$, такой что $f_2=\lambda f_1,\ f_3=\lambda f_2,\ldots$, $f_n=\lambda f_{n-1}$. Тогда ясно, что \tilde{f} ненулевой, причем

$$\tilde{f}((\tilde{B}_1 - \lambda \tilde{I})\tilde{x}) = f_1(A_n x_n - \lambda x_1) + f_2(x_1 - \lambda x_2) + \dots + f_n(x_{n-1} - \lambda x_n) =$$

$$= f_1(A_n x_n - \lambda x_1) + \lambda f_1(x_1 - \lambda x_2) + \dots + \lambda^{n-1} f_1(x_{n-1} - \lambda x_n) = f_1(A_n x_n - \lambda^n x_n) = 0.$$

Так как вектор \tilde{x} произвольный, то $\lambda \in \sigma_r(\tilde{B}_1)$. Последнее утверждение теоремы справедливо, поскольку оно вытекает согласно доказанным утверждениям при переходе к дополнениям соответствующих спектров $\sigma(A_n)$ и $\sigma(\tilde{B}_1)$. Теорема доказана.

Математика 27

Теперь перейдем к изучению спектральности оператора $ilde{C}.$

Теорема 5. Пусть операторы A_i попарно коммутируют, причем оператор A_1 квазинильпотентен, а оператор A_n ограниченно обратим. Тогда $\sigma(\tilde{C}) = h(\sigma((I-A_0)^{-1}A_n))$, причем если $(I-A_0)^{-1}A_n$ — спектральный оператор с разложением единицы $E(\cdot)$, то \tilde{C} есть спектральный оператор с разложением единицы $E(\cdot)$, а $E(\cdot)$ и $E(\cdot)$, а $E(\cdot)$ и $E(\cdot$

Доказательство теоремы непосредственно следует из теоремы 2.

Автор выражает благодарность профессору А.М. Ахмедову за постановку задачи и обсуждение полученных результатов.

Библиографический список

- 1. Данфор∂ Н., Шварц Дж.Т. Линейные операторы. Спектральные операторы. Т. III. М.: Мир, 1974.
- 2. *Dunford N.* Spectral operators // Pac. J. Math. 1954. V. 4. P. 321–354.
- 3. Stampfli J.G. Roots of scalar operators // Proc. Amer. Math. Soc. 1962. V. 13. P. 796–798.
- 4. *Аллахвердиев Дж.Э., Ахмедов А.М.* Некоторые классы обобщенных спектральных операторов и их приложения // Мат. сборник. 1990. Т. 67, № 5. С. 43–63.
- 5. Ахмедов А.М. Некоторые спектральные свойства обобщенных спектральных операторов // Линейные

операторы и их приложения. Баку, 1989. С. 3–15. 6. $Axme\partial os$ A.M. Спектральность полиномиальных операторных пучков // Линейные операторы и их применения. Баку, 1986. С. 5–10.

- 7. *Ismailov M.I.* On spectrum property of matrix operators in Banach space // Proceedings of IMM of NAS of Azerb. 2006. V. XXV (XXXIII). P. 47–52.
- 8. Исмайлов М.И. Исследование спектра и спектральности некоторых матричных операторов в банаховом пространстве // Вестн. Бакин. ун-та. Сер. физ.-мат. наук. 2007. \mathbb{N}_2 2. С. 36–43.

УДК 517.984

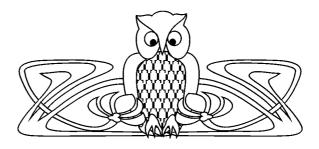
О БАЗИСАХ РИССА ИЗ СОБСТВЕННЫХ ФУНКЦИЙ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ С ЯДРАМИ, РАЗРЫВНЫМИ НА ЛОМАНЫХ ЛИНИЯХ

В.П. Курдюмов

Саратовский государственный университет, кафедра дифференциальных уравнений и прикладной математики E-mail: KurdyumovVP@info.sgu.ru

Доказана базисность Рисса собственных и присоединенных функций интегрального оператора, ядро которого терпит разрывы первого рода на ломаных линиях, образованных из сторон и диагоналей квадратов, полученных разбиением единичного квадрата $0 \le x, t \le 1$ на четыре равных квадрата.

Ключевые слова: интегральный оператор, краевые условия, регулярность, базисность Рисса, собственные функции, собственные значения.



On Riesz Basises of Eigenfunctions of Integral Operators with Kernels Discontinuous on Broken Lines

V.P. Kurdyumov

Saratov State University, Chair of Differential Equations and Applied Mathematics E-mail: KurdyumovVP@info.sgu.ru

For the integral operator, which kernel has jump discontinuities on the sides and diagonals of the four equal subsquares of the unit square $0 \leq x, t \leq 1$, Riesz basisness of its eigen and associated functions is proved.

Key words: integral operator, boundary conditions, regularity, Riesz basisness, eigenfunctions, eigenvalues.

В настоящей работе рассматривается вопрос о базисности Рисса в пространстве $L_2[0,1]$ собственных и присоединенных функций с.п.ф. интегрального оператора:

$$y = Af = \int_{0}^{1} A(x,t)f(t)dt,$$
 (1)

ядро которого терпит разрывы первого рода на некоторых ломаных в единичном квадрате $0 \le x, t \le 1$.