

Теперь перейдем к изучению спектральности оператора $ilde{C}.$

Теорема 5. Пусть операторы A_i попарно коммутируют, причем оператор A_1 квазинильпотентен, а оператор A_n ограниченно обратим. Тогда $\sigma(\tilde{C}) = h(\sigma((I-A_0)^{-1}A_n))$, причем если $(I-A_0)^{-1}A_n$ — спектральный оператор с разложением единицы $E(\cdot)$, то \tilde{C} есть спектральный оператор с разложением единицы $E(\cdot)$, а $E(\cdot)$ и $E(\cdot)$

Доказательство теоремы непосредственно следует из теоремы 2.

Автор выражает благодарность профессору А.М. Ахмедову за постановку задачи и обсуждение полученных результатов.

Библиографический список

- 1. Данфор∂ Н., Шварц Дж.Т. Линейные операторы. Спектральные операторы. Т. III. М.: Мир, 1974.
- 2. *Dunford N*. Spectral operators // Pac. J. Math. 1954. V. 4. P. 321–354.
- 3. Stampfli J.G. Roots of scalar operators // Proc. Amer. Math. Soc. 1962. V. 13. P. 796–798.
- 4. *Аллахвердиев Дж.Э., Ахмедов А.М.* Некоторые классы обобщенных спектральных операторов и их приложения // Мат. сборник. 1990. Т. 67, № 5. С. 43–63.
- 5. Ахмедов А.М. Некоторые спектральные свойства обобщенных спектральных операторов // Линейные

операторы и их приложения. Баку, 1989. С. 3–15. 6. *Ахмедов А.М.* Спектральность полиномиальных операторных пучков // Линейные операторы и их применения. Баку, 1986. С. 5–10.

- 7. *Ismailov M.I.* On spectrum property of matrix operators in Banach space // Proceedings of IMM of NAS of Azerb. 2006. V. XXV (XXXIII). P. 47–52.
- 8. Исмайлов М.И. Исследование спектра и спектральности некоторых матричных операторов в банаховом пространстве // Вестн. Бакин. ун-та. Сер. физ.-мат. наук. 2007. \mathbb{N}_2 2. С. 36–43.

УДК 517.984

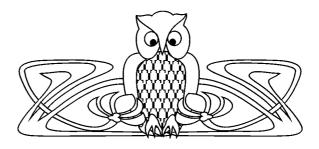
О БАЗИСАХ РИССА ИЗ СОБСТВЕННЫХ ФУНКЦИЙ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ С ЯДРАМИ, РАЗРЫВНЫМИ НА ЛОМАНЫХ ЛИНИЯХ

В.П. Курдюмов

Саратовский государственный университет, кафедра дифференциальных уравнений и прикладной математики E-mail: KurdyumovVP@info.sgu.ru

Доказана базисность Рисса собственных и присоединенных функций интегрального оператора, ядро которого терпит разрывы первого рода на ломаных линиях, образованных из сторон и диагоналей квадратов, полученных разбиением единичного квадрата $0 \le x, t \le 1$ на четыре равных квадрата.

Ключевые слова: интегральный оператор, краевые условия, регулярность, базисность Рисса, собственные функции, собственные значения.



On Riesz Basises of Eigenfunctions of Integral Operators with Kernels Discontinuous on Broken Lines

V.P. Kurdyumov

Saratov State University,

Chair of Differential Equations and Applied Mathematics E-mail: KurdyumovVP@info.sgu.ru

For the integral operator, which kernel has jump discontinuities on the sides and diagonals of the four equal subsquares of the unit square $0 \leq x, t \leq 1$, Riesz basisness of its eigen and associated functions is proved.

Key words: integral operator, boundary conditions, regularity, Riesz basisness, eigenfunctions, eigenvalues.

В настоящей работе рассматривается вопрос о базисности Рисса в пространстве $L_2[0,1]$ собственных и присоединенных функций с.п.ф. интегрального оператора:

$$y = Af = \int_{0}^{1} A(x,t)f(t)dt, \tag{1}$$

ядро которого терпит разрывы первого рода на некоторых ломаных в единичном квадрате $0 \le x, t \le 1$.

В работах [1–3] интегральный оператор (1) изучался, когда ядро (или его некоторые производные) имело разрывы на линиях t=x и t=1-x. В работе [4] проведено исследование равносходимости по с.п.ф. оператора A и в тригонометрический ряд, когда ядро терпит разрывы на ломаных линиях, образованных из сторон и диагоналей квадратов, полученных разбиением единичного квадрата на n^2 равных квадратов; показано, что исследование оператора (1) может быть для произвольного n сведено к исследованию интегрального оператора B в пространстве вектор-функций той же размерности.

Здесь рассматривается случай n=2, как и в работе [4] получаем оператор

$$z = Bg = \int_{0}^{1/2} B(x,t)g(t)dt, \quad x \in [0,1/2],$$
 (2)

где $z(x)=(z_1(x),z_2(x))^T,\ g(x)=(g_1(x),g_2(x))^T,\ T$ — знак транспонирования, $z_k(x)=y\left(\frac{k-1}{2}+x\right),\ g_k(x)=f\left(\frac{k-1}{2}+x\right),\ B(x,t)=(B_{ij}(x,t))_1^2,\ B_{ij}(x,t)=A\left(\frac{i-1}{2}+x,\frac{j-1}{2}+t\right).$ Считаем, что компоненты $B_{ij}(x,t)$ матрицы B(x,t) имеют вид $B_{ij}(x,t)=B_{ij}^1(x,t)+B_{ij}^2(x,t)$, где

Считаем, что компоненты $B_{ij}(x,t)$ матрицы B(x,t) имеют вид $B_{ij}(x,t)=B^1_{ij}(x,t)+B^2_{ij}(x,t)$, где $\frac{\partial^{k+l}}{\partial x^k \partial t^l} B^1_{ij} \left(\frac{\partial^{k+l}}{\partial x^k \partial t^l} B^2_{ij} \right) (k+l \leq 2$, причем, если k+l=2, то k=l=1) непрерывны, кроме, быть может, линии t=x, (t+x=1/2). При подходе к каждой такой линии с любой стороны $B^1_{ij}(x,t)$ и $B^2_{ij}(x,t)$ принимают постоянные значения. Кроме того, считаем, что $\frac{\partial}{\partial x} B^1_{ij}(x,x\pm 0)$, $\frac{\partial}{\partial x} B^2_{ij}(x,1/2-x\pm 0)$, $\frac{\partial}{\partial x} B^s_{ij}(x,j)$, $s=1,2,\ j=0,1$, непрерывно дифференцируемы.

Обозначим $P_1=B(x,x-0)-B(x,x+0),\ P_2=B(x,1/2-x-0)-B(x,1/2-x+0).$ Как и в работе [4, с. 131] предполагаем, что блочная матрица $\begin{pmatrix} P_1 & P_2 \\ P_2 & P_1 \end{pmatrix}$ обратима и, кроме того, считаем выполненными условия леммы 14 из работы [4], гарантирующие существование оператора B^{-1} .

Лемма 1 [4, теорема 11]. Если $R_{\lambda}(A) = (E - \lambda A)^{-1}A$ (E - eдиничный оператор, $\lambda - c$ пектральный параметр) существует, то

$$R_{\lambda}(A)f = \begin{cases} z_1(x), & x \in [0, 1/2], \\ z_2(x - 1/2), & x \in [1/2, 1], \end{cases}$$
 (3)

еде $z_1(x)$, $z_2(x)$ — первые две компоненты вектора y(x) размерности 4, удовлетворяющего следующей системе:

$$Qy'(x) + \tilde{P}_1(x)y(0) + \tilde{P}_2(x)y(1/2) + \tilde{P}_3(x)y(x) + \tilde{N}y - \lambda y(x) = \tilde{m}(x), \tag{4}$$

$$\tilde{M}_0 y(0) + \tilde{M}_1 y(1/2) + \int_0^{1/2} \tilde{a}(t) y(t) dt = 0,$$
(5)

где
$$Q=\begin{pmatrix}Q_1&-Q_2\\Q_2&-Q_1\end{pmatrix}$$
, причем $\begin{pmatrix}Q_1&Q_2\\Q_2&Q_1\end{pmatrix}=\begin{pmatrix}P_1&P_2\\P_2&P_1\end{pmatrix}^{-1}$, Q_i — блочные матрицы, $\tilde{P}_1(x)=\begin{pmatrix}a_1(x)&a_2(x)\\0&0\end{pmatrix}$, $\tilde{P}_2(x)=\begin{pmatrix}0&0\\a_2(1/2-x)&a_1(1/2-x)\end{pmatrix}$, $\tilde{P}_3(x)=\begin{pmatrix}a_3(x)&a_4(x)\\a_4(1/2-x)&a_3(1/2-x)\end{pmatrix}$, $\tilde{N}y=\int\limits_0^{1/2}\tilde{N}(x,t)y(t)dt$, $\tilde{N}(x,t)=\begin{pmatrix}a(x,t)&0\\a(1/2-x,t)&0\end{pmatrix}$, $\tilde{M}_0=\begin{pmatrix}S&T\\0&0\end{pmatrix}$, $\tilde{M}_1=\begin{pmatrix}0&0\\T&S\end{pmatrix}$, $\tilde{a}(t)=\begin{pmatrix}a(t)&0\\a(t)&0\end{pmatrix}$, $\tilde{m}(x)=(g^T(x),g^T(1/2-x))^T$, непрерывные матрицы-функции $a(x)$, $a(x,t)$, $a_i(x)$ $(i=1,\ldots,4)$ и постоянные матрицы S и T (все размерности 2×2) определены в работе $[4$, теорема $10]$.

Верно и обратное: если λ таково, что однородная краевая задача для системы (4)–(5) имеет только нулевое решение,то $R_{\lambda}(A)f$ существует и определяется по формуле (3).

Предположим, что все собственные значения матрицы Q различны, отличны от нуля и пусть Γ — неособая матрица, диагонализирующая Q^{-1} , то есть $\Gamma^{-1}Q^{-1}\Gamma = D$. Выполним в (4)–(5) замену

 $y(x) = \Gamma z(x)$ (теперь z(x) получает новый смысл и имеет размерность 4), тогда система (4)–(5) переходит в систему

$$z'(x) + P_1(x)z(0) + P_2(x)z(1/2) + P_3(x)z(x) + Nz - \lambda Dz(x) = m(x),$$
(6)

$$M_0 z(0) + M_1 z(1/2) + \int_0^{1/2} \Omega(t) z(t) dt = 0,$$
(7)

где $P_i(x)=D\Gamma^{-1}\tilde{P}_i(x)\Gamma$, $N=D\Gamma^{-1}\tilde{N}\Gamma$, $m(x)=D\Gamma^{-1}\tilde{m}(x)$, $\Omega(t)=\tilde{a}(t)\Gamma$, $M_0=\tilde{M}_0\Gamma$, $M_1=\tilde{M}_1\Gamma$.

Лемма 2 [4, лемма 16]. Существует матрица $H(x,\lambda) = H_0(x) + \lambda^{-1}H_1(x)$ с непрерывно дифференцируемыми компонентами матриц $H_0(x)$, $H_1(x)$, причем $H_0(x)$ невырождена при всех x, диагональная и такая, что преобразование $z = H(x,\lambda)v$ приводит систему (6)–(7) к виду

$$v'(x) + P_1(x,\lambda)v(0) + P_2(x,\lambda)v(1/2) + P_3(x,\lambda)v(x) + N_{\lambda}v - \lambda Dv(x) = m(x,\lambda),$$
(8)

$$U(v) = M_0(\lambda)v(0) + M_1(\lambda)v(1/2) + \int_0^{1/2} \Omega(t,\lambda)v(t)dt = 0,$$
(9)

εθε $P_1(x, \lambda) = H^{-1}(x, \lambda)P_1(x)H(0, \lambda)$, $P_2(x, \lambda) = H^{-1}(x, \lambda)P_2(x)H(1/2, \lambda)$, $P_3(x, \lambda) = \lambda^{-1}H^{-1}(x, \lambda) \times [H'_1(x) + P_3(x)H_1(x)]$, $N_{\lambda} = H^{-1}(x, \lambda)NH(x, \lambda)$, $M_0(\lambda) = M_0H(0, \lambda)$, $M_1(\lambda) = M_1H(1/2, \lambda)$, $\Omega(t, \lambda) = \Omega(t)H(t, \lambda)$, $m(x, \lambda) = H^{-1}(x, \lambda)m(x)$.

Лемма 3. Если $v(x,\lambda) = (v_1(x,\lambda), \dots, v_4(x,\lambda))^T$ является решением задачи (8)–(9), то

$$R_{\lambda}(A)f = \sum_{j=1}^{4} \gamma_{1j}h_{j}(x)v_{j}(x,\lambda) + \frac{1}{\lambda} \sum_{j=1}^{4} r_{j}(x)v_{j}(x,\lambda), \ x \in [0,1/2],$$

$$R_{\lambda}(A)f = \sum_{i=1}^{4} \gamma_{2j} h_j(x - 1/2) v_j(x - 1/2, \lambda) + \frac{1}{\lambda} \sum_{i=1}^{4} r_j(x - 1/2) v_j(x - 1/2, \lambda), \quad x \in [1/2, 1],$$

где $\gamma_{i,j}$ — элементы матрицы Γ , $h_j(x)$ — диагональные элементы матрицы $H_0(x)$, $r_j(x) = \sum\limits_{k \neq j} \gamma_{1k} r_{kj}$, $r^j(x) = \sum\limits_{k \neq j} \gamma_{2k} r_{kj}(x)$, r_{kj} — элементы матрицы $H_1(x)$.

Доказательство следует из леммы 1, введенной замены $y(x) = \Gamma z(x)$ и леммы 2.

Проведем необходимое исследование системы (8)-(9). Рассмотрим

$$\omega'(x) = \lambda D\omega(x) + m(x),\tag{10}$$

$$U(\omega) = 0, (11)$$

где $U(\cdot)$ берется из (9), а m(x) — произвольная вектор-функция с компонентами из $L_2[0,1/2]$.

Нетрудно получается следующее утверждение.

Лемма 4. Элементы матрицы D симметричны относительно начала координат. Кроме того, все они расположены на двух разных прямых, проходящих через начало координат, если выполняется условие

$$\operatorname{Re} \frac{s_1^2}{s_2} \neq 2 + |\mu| + \frac{1}{|\mu|},$$
 (12)

и на одной прямой, если

Re
$$\frac{s_1^2}{s_2} = 2 + |\mu| + \frac{1}{|\mu|}, \quad |\mu| \neq 1,$$
 (13)

где $s_1=q_{11}^2+2q_{12}q_{21}+q_{22}^2-g_{11}^2-2g_{12}g_{21}-g_{22}^2$, $s_2=\det Q$, $s_3=(s_1^2-4s_2)^{1/2}$, $q_{ij}(g_{ij})$ — компоненты матриц $Q_1(Q_2)$, $\mu=(s_1+s_3)(s_1-s_3)^{-1}$.

Пусть ω_j $(j=1,\ldots,4)$ — элементы матрицы D. Обозначим

$$\sigma_{j}(x,\lambda) = \begin{cases} e^{\lambda\omega_{j}x}, & \operatorname{Re}\lambda\omega_{j} \leq 0, \\ e^{\lambda\omega_{j}(x-1/2)}, & \operatorname{Re}\lambda\omega_{j} > 0. \end{cases}, \qquad g_{j}(x,t,\lambda) = \begin{cases} \varepsilon(x,t)e^{\lambda\omega_{j}(x-t)}, & \operatorname{Re}\lambda\omega_{j} \leq 0, \\ -\varepsilon(t,x)e^{\lambda\omega_{j}(x-t)}, & \operatorname{Re}\lambda\omega_{j} > 0, \end{cases}$$

30 Научный отдел

 $g(x,t,\lambda)=\mathrm{diag}\,(g_1(x,t,\lambda),\ldots,g_4(x,t,\lambda))$, где $\varepsilon(x,t)=1$ при $t\leq x,\,\varepsilon(x,t)=0$ при t>x.Так же как в работе [4, лемма 1] получается

Лемма 5. Для решения $\omega(x) = \omega(x, \lambda)$ задачи (10)-(11) имеет место формула

$$\omega(x,\lambda) = g_{\lambda}m(x) - V(x,\lambda)\Delta^{-1}(\lambda)\Phi(m,\lambda),$$

еде
$$g_{\lambda}m(x)=\int\limits_{0}^{1/2}g(x,t,\lambda)m(t)dt$$
, $V(x,\lambda)=\mathrm{diag}\left(\sigma_{1}(x,\lambda),\ldots,\sigma_{4}(x,\lambda)\right)$, $\Delta(\lambda)=U(V(x,\lambda))$, $\Phi(m,\lambda)=\int\limits_{0}^{1/2}U_{x}(g(x,t,\lambda))m(t)dt$, U_{x} означает, что U применяется κ $g(x,t,\lambda)$ по x .

$$\Phi(m,\lambda)=\int\limits_0^{1/2}U_x(g(x,t,\lambda))m(t)dt$$
, U_x означает, что U применяется κ $g(x,t,\lambda)$ по x .

По лемме 4 собственные значения матрицы D расположены либо на двух, либо на одной прямой, проходящих через начало координат. Рассмотрим каждый их этих случаев подробно.

Пусть сначала имеет место (12), тогда числа ω_i ($i=1,\ldots,4$) расположены на двух прямых, проходящих через начало координат. Для определенности считаем $\omega_1 = -\omega_4$, $\omega_2 = -\omega_3$, $\arg \omega_i = \alpha_i$, $0 \le \alpha_j < \pi \ (j = 1, 2), \ \arg \omega_3 = \alpha_2 + \pi, \ \arg \omega_4 = \alpha_1 + \pi, \ 0 \le \alpha_1 < \alpha_2 < \pi + \alpha_1 < \pi + \alpha_2.$ Через d_j $(j=1,\ldots,4)$ обозначим лучи с центром в начале координат: $\arg d_j=\frac{\pi}{2}-\arg \omega_j.$ Построим еще лучи l_i' , l_i'' $(j=1,\ldots,4)$ с центром в начале координат: $\arg l_i'=\arg d_i+\varepsilon_j$; $\arg l_j''=rg d_j-arepsilon_j$, где $arepsilon_j>0$, достаточно мало и, например, при j=1 выбирается из условий, чтобы при λ , принадлежащих сектору $S_1=l_1'Od_1$, выполнялось неравенство $\mathrm{Re}\,\lambda\omega_2<\mathrm{Re}\,\lambda\omega_1$ (тогда $\operatorname{Re} \lambda \omega_2 < \operatorname{Re} \lambda \omega_1 \leq 0 \leq \operatorname{Re} \lambda \omega_4 < \operatorname{Re} \lambda \omega_3$), а при $\lambda \in S_1' = d_1 O l_1''$ выполнялось $\operatorname{Re} \lambda \omega_2 < \operatorname{Re} \lambda \omega_4$ (тогда $\operatorname{Re} \lambda \omega_2 < \operatorname{Re} \lambda \omega_4 \le 0 \le \operatorname{Re} \lambda \omega_1 < \operatorname{Re} \lambda \omega_3$). Аналогично определяются ε_j (j=2,3,4) для секторов $S_j = l_i'Od_j$ и $S_i' = d_jOl_i''$. Рассмотрим каждый из секторов S_j (секторы S_i' рассматриваются аналогично).

Лемма 6. В секторе S_1 для матрицы $\Delta(\lambda)$ при больших $|\lambda|$ имеет место представление

$$\Delta(\lambda) = \begin{pmatrix} [a_{11}] & [a_{12}] & o(1) & [a_{14}e^{\mu\omega_1}] \\ [a_{21}] & [a_{22}] & o(1) & [a_{24}e^{\mu\omega_1}] \\ [b_{31}e^{\mu\omega_1}] & o(1) & [b_{33}] & [b_{34}] \\ [b_{41}e^{\mu\omega_1}] & o(1) & [b_{43}] & [b_{44}] \end{pmatrix},$$

где $\mu = \lambda/2$, a_{ij} (b_{ij}) — компоненты матрицы K_0 (L_0) ,

$$K_0 = \begin{pmatrix} S\Gamma_{11} + T\Gamma_{21} & S\Gamma_{12} + T\Gamma_{22} \\ 0 & 0 \end{pmatrix} H_0(0), \qquad L_0 = \begin{pmatrix} 0 & 0 \\ T\Gamma_{11} + S\Gamma_{21} & T\Gamma_{21} + S\Gamma_{22} \end{pmatrix} H_0(1/2),$$

 Γ_{ij} — блоки матрицы Γ , [a] = a + o(1).

Доказательство. Имеем

$$\Delta(\lambda) = \Delta_0(\lambda) + \Delta_1(\lambda),\tag{14}$$

где $\Delta_0(\lambda)=M_0(\lambda)V(0,\lambda)+M_1(\lambda)V(1/2,\lambda),$ $\Delta_1(\lambda)=\int\limits_0^{1/2}\Omega(t,\lambda)V(t,\lambda)dt.$ Для $\Delta_0(\lambda)$ имеет место формула

$$\Delta_0(\lambda) = K_0 V(0, \lambda) + L_0 V(1/2, \lambda) + \lambda^{-1} (K_1 V(0, \lambda) + L_1 V(1/2, \lambda)),$$

где K_1 и L_1 — постоянные матрицы. Так как при $\lambda \in S_1$: $\operatorname{Re} \lambda \omega_2 < \operatorname{Re} \lambda \omega_1 \le 0 \le \operatorname{Re} \lambda \omega_4 < \operatorname{Re} \lambda \omega_3$, то $V(x,\lambda) = \operatorname{diag}\left(e^{\lambda\omega_1 x}, e^{\lambda\omega_2 x}, e^{\lambda\omega_3(x-1/2)}, e^{\lambda\omega_4(x-1/2)}\right) = \operatorname{diag}\left(e^{\lambda\omega_1 x}, e^{\lambda\omega_2 x}, e^{-\lambda\omega_2(x-1/2)}, e^{-\lambda\omega_1(x-1/2)}\right).$ Далее, по лемме 4 из работы [5] все элементы $\Delta_1(\lambda)$ есть o(1). Поэтому утверждение леммы следует из (14).

Следствие. Для $\det \Delta(\lambda)$ при $\lambda \in S_1$ имеет место асимптотическая формула

$$\det \Delta(\lambda) = [\Theta_0^1] + [\Theta_1^1]e^{2\mu\omega_1}.$$

$$\varepsilon \partial e \qquad \Theta_0^1 = \left| \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| \left| \begin{array}{ccc} b_{33} & b_{34} \\ b_{43} & b_{44} \end{array} \right|, \qquad \Theta_1^1 = - \left| \begin{array}{ccc} a_{12} & a_{14} \\ a_{22} & a_{24} \end{array} \right| \left| \begin{array}{ccc} b_{31} & b_{33} \\ b_{41} & b_{43} \end{array} \right|.$$

Аналогично получаются следующие утверждения.

Лемма 7. Имеют место асимптотические формулы:

$$\det \Delta(\lambda) = [\Theta_0^2] + [\Theta_1^2] e^{2\mu\omega_2}, \quad \lambda \in S_2,$$

$$\varepsilon\partial\varepsilon\;\Theta_0^2 = - \left| \begin{array}{ccc} a_{12} & a_{14} \\ a_{22} & a_{24} \end{array} \right| \left| \begin{array}{ccc} b_{31} & b_{33} \\ b_{41} & b_{43} \end{array} \right|, \;\; \Theta_1^2 = \left| \begin{array}{ccc} a_{13} & a_{14} \\ a_{23} & a_{24} \end{array} \right| \left| \begin{array}{ccc} b_{31} & b_{32} \\ b_{41} & b_{42} \end{array} \right|;$$

$$\det \Delta(\lambda) = [\Theta_0^3] + [\Theta_1^3]e^{2\mu\omega_4}, \ \lambda \in S_3,$$

$$\varepsilon \partial \varepsilon \ \Theta_0^3 = \left| \begin{array}{ccc} a_{13} & a_{14} \\ a_{23} & a_{24} \end{array} \right| \left| \begin{array}{ccc} b_{31} & b_{32} \\ b_{41} & b_{42} \end{array} \right|, \ \ \Theta_1^3 = - \left| \begin{array}{cccc} a_{11} & a_{13} \\ a_{21} & a_{23} \end{array} \right| \left| \begin{array}{cccc} b_{32} & b_{34} \\ b_{42} & b_{44} \end{array} \right|;$$

$$\det \Delta(\lambda) = [\Theta_0^4] + [\Theta_1^4] e^{2\mu\omega_3}, \quad \lambda \in S_4,$$

$$\varepsilon \partial \varepsilon \ \Theta_0^4 = - \left| \begin{array}{cc|c} a_{11} & a_{13} \\ a_{21} & a_{23} \end{array} \right| \left| \begin{array}{cc|c} b_{32} & b_{34} \\ b_{42} & b_{44} \end{array} \right|, \ \ \Theta_1^4 = \left| \begin{array}{cc|c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| \left| \begin{array}{cc|c} b_{33} & b_{34} \\ b_{43} & b_{44} \end{array} \right|.$$

Лемма 8. Пусть выполнено условие (12) и

$$\prod_{j=1}^{4} \Theta_0^j \Theta_1^j \neq 0. \tag{15}$$

Тогда все собственные значения краевой задачи (10)–(11) расположены в двух полосах, границы которых параллельны лучам d_j (j=1,2) и вне δ -окрестностей собственных значений $(\delta>0$ и достаточно мало) справедлива оценка

$$|\det \Delta(\lambda)| \ge c,\tag{16}$$

 $c ext{-} \partial e \ c > 0$ и не зависит от δ .

Доказательство. Так как собственные значения задачи (10)–(11) являются нулями $\det \Delta(\lambda)$, то утверждение леммы следует из следствия к лемме 6 и леммы 7.

Пусть теперь имеет место (13), тогда числа ω_j $(j=1,\dots,4)$ расположены на одной прямой, проходящей через начало координат. Считаем, что $\omega_1=-\omega_4,\,\omega_2=-\omega_3$ и пусть $\arg\omega_1=\arg\omega_2=\alpha,\,0\leq\alpha<\pi,\,|\omega_1|>|\omega_2|.$ Обозначим через d_1 луч с центром в начале координат, $\arg d_1=\frac{\pi}{2}-\alpha,\,d_2$ — продолжение этого луча. Лучи d_1 и d_2 разбивают λ -плоскость на два сектора. Обозначим через S_0 тот из секторов, который расположен от луча d_1 в направление против часовой стрелки.

Лемма 9. Для $\det \Delta(\lambda)$ при $\lambda \in S_0$ имеет место асимптотическая формула:

$$\det \Delta(\lambda) = [\Theta_0] + [\Theta_1]e^{2\mu\omega_1} + [\Theta_2]e^{2\mu\omega_2} + [\Theta_3]e^{\mu(\omega_1 + \omega_2)} + [\Theta_4]e^{2\mu(\omega_1 + \omega_2)},$$

Доказательство аналогично доказательству леммы 6.

Лемма 10. Пусть выполнено (13) и условие

$$\Theta_0 \Theta_4 \neq 0. \tag{17}$$

Тогда все собственные значения краевой задачи (10)–(11) расположены в некоторой полосе, симметричной относительно начала координат, границы которой параллельны лучу d_1 , причем в любом прямоугольнике единичной длины этой полосы (то есть две стороны являются границами полосы, а две другие стороны отстоят друг от друга на единицу) число собственных значений ограниченно числом, не зависящим от прямоугольника; и вне их δ -окрестностей справедлива оценка (16).

Доказательство следует из леммы 9 и [6, гл. 3, § 1, теорема 7].

В дальнейшем считаем, что $\lambda \in S_0$ (тогда $\operatorname{Re} \lambda \omega_1 \leq \operatorname{Re} \lambda \omega_2 \leq 0 \leq \operatorname{Re} \lambda \omega_3 \leq \operatorname{Re} \lambda \omega_4$), выполняются условия (13) и (17) (случай, когда $\lambda \in S_j$ ($j=1,\ldots,4$) и выполняются условия (12) и (15) рассматривается аналогично, с естественными изменениями и использованием рассуждений из работы [3]).

32 Научный отдел

Тогда в лемме 5 $g(x,t,\lambda) = \mathrm{diag} \; \left(e^{\lambda \omega_1(x-t)}, e^{\lambda \omega_2(x-t)}, 0, 0 \right) \; \mathrm{при} \; x \geq t; \; g(x,t,\lambda) = \mathrm{diag} \left(0, 0, -e^{-\lambda \omega_2(x-t)}, -e^{-\lambda \omega_1(x-t)} \right) \; \mathrm{при} \; x < t; \; V(x,\lambda) = \mathrm{diag} \left(\sigma_1(x,\lambda), \sigma_2(x,\lambda), \sigma_2(1/2-x,\lambda), \sigma_1(1/2-x,\lambda) \right).$

Лемма 11. Для $\Phi(m,\lambda)$ из леммы 5 имеет место представление: $\Phi(m,\lambda) = (\Phi_1(m,\lambda),\ldots,\Phi_4(m,\lambda))^T$, где $\Phi_j(m,\lambda)$ являются линейными комбинациями с ограниченными по λ при $|\lambda|$ достаточно больших коэффициентами интегралов $\int\limits_0^{1/2} \sigma(t,\lambda)m_j(t)dt$ $(j=1,\ldots,4)$, где $\sigma(t,\lambda)$ — любая из функций $\sigma_j(t,\lambda)$, $\sigma_j(1/2-t,\lambda)$ (j=1,2); и интегралов $\int\limits_0^{1/2} \sigma(t,\lambda)\varphi(t)dt$, где $\varphi(t)$ — любая из функций $\int\limits_0^{1/2-t} a(t,\tau)m_j(\tau)d\tau$ $\int\limits_0^{1/2} b(t,\tau)m_j(\tau)d\tau$; $a(t,\tau)$ — любая из функций $c(\tau+t)$ $d(\tau+t)$:

из функций $\int\limits_0^{1/2-t} a(t,\tau)m_j(\tau)d\tau, \int\limits_t^{1/2} b(t,\tau)m_j(\tau)d\tau; \ a(t,\tau)$ — любая из функций $c(\tau+t),\ d(\tau+t);$ $b(t,\tau)$ — любая из функций $c(\tau-t),\ d(\tau-t);\ c(t)(d(t))$ — компоненты матрицы $\Omega_0(t)(\Omega_1(t));$ $\Omega_0(t)+\lambda^{-1}\Omega_1(t)=\Omega(t,\lambda).$

Доказательство очевидно.

Введем следующие обозначения: $\{\lambda: | \operatorname{Re} \lambda \omega_1 | \leq h \}$ — полоса из леммы 10; $\Pi = \{\lambda \omega_1: | \operatorname{Re} \lambda \omega_1 | \leq h, \operatorname{Im} \lambda \omega_1 \geq 0 \}$; λ_k — нули $\det \Delta(\lambda)$ из леммы 9. Удалим из Π все точки $\lambda_k \omega_1$ вместе с круговыми окрестностями одного и того же достаточно малого радиуса δ . Получившуюся область обозначим $\Pi(\delta)$ и через $\Pi_1(\delta)$ обозначим часть $\Pi(\delta)$, когда $\operatorname{Re} \lambda \omega_1 \leq 0$.

Лемма 12. Если $\lambda\omega_1 \in \Pi_1(\delta)$ и $|\lambda|$ достаточно велико, то существует единственное решение $\omega(x,\lambda) = R_{1\lambda}m$ задачи (10)-(11), для компонент которого имеют место представления:

$$(R_{1\lambda}m)_{1} = \int_{0}^{x} e^{\lambda\omega_{1}(x-t)}m_{1}(t)dt + W_{1}(m,\lambda)e^{\lambda\omega_{1}x}, \quad (R_{1\lambda}m)_{2} = \int_{0}^{x} e^{\lambda\omega_{2}(x-t)}m_{2}(t)dt + W_{2}(m,\lambda)e^{\lambda\omega_{2}x},$$

$$(R_{1\lambda}m)_{3} = -\int_{x}^{1/2} e^{-\lambda\omega_{2}(x-t)}m_{3}(t)dt + W_{3}(m,\lambda)e^{-\lambda\omega_{2}(x-1/2)},$$

$$(R_{1\lambda}m)_{4} = -\int_{x}^{1/2} e^{-\lambda\omega_{1}(x-t)}m_{4}(t)dt + W_{4}(m,\lambda)e^{-\lambda\omega_{1}(x-1/2)},$$

где $W_j(m,\lambda)(j=1,\ldots,4)$ — линейные комбинации тех же интегралов, что и в лемме 11 с ограниченными по λ коэффициентами.

Утверждение леммы следует из лемм 5 и 11, если учесть, что в силу леммы 10 элементы матрицы $\Delta(\lambda)$ ограничены по λ .

Лемма 13. Если λ — то же, что и в лемме 12, то существует единственное решение $v(x,\lambda)$ задачи (8)–(9), которое представимо в виде конечной линейной комбинации с постоянными коэффициентами следующих векторов:

$$R_{1\lambda}q(x), \quad R_{1\lambda}M_{\lambda}R_{1\lambda}q(x), \quad \frac{1}{\lambda}R_{1\lambda}q(x), \quad \frac{1}{\lambda}R_{1\lambda}M_{\lambda}q(x), \quad R_{1\lambda}P(x)g(x_0,\lambda), \quad R_{1\lambda}P(x)p(x_0,\lambda),$$

$$R_{1\lambda}M_{\lambda}R_{1\lambda}P(x)g(x_0,\lambda), \quad R_{1\lambda}M_{\lambda}R_{1\lambda}P(x)p(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}P(x)g(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}P(x)l(x_0,\lambda),$$

$$\frac{1}{\lambda}R_{1\lambda}P(x)M_{\lambda}g(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}P(x)M_{\lambda}p(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}M_{\lambda}P(x)g(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}M_{\lambda}P(x)p(x_0,\lambda),$$

$$\frac{1}{\lambda}R_{1\lambda}M_{\lambda}R_{1\lambda}P(x)g(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}M_{\lambda}R_{1\lambda}P(x)l(x_0,\lambda), \quad \frac{1}{\lambda}R_{1\lambda}M_{\lambda}R_{1\lambda}P(x)p(x_0,\lambda), \quad O\left(\frac{\|f\|}{\lambda^2}\right),$$

еде q(x) — любой из векторов $q_i(x)$ (i=1,2), $q_1(x)=H_0^{-1}(x)m(x)$, $q_2(x)=-H_0^{-1}(x)H_1(x)H_0^{-1}(x)\times M_1(x)$ (i=0,1,2,3), $M_0(x)=N_1L_\lambda$, $M_1(x)=(H_2(x)+N_2)L_\lambda R_1(x)$, $M_2(x)=N_1L_\lambda R_1(x)$, $M_3(x)=N_2L_\lambda R_1(x)$, $N_1=H_0^{-1}(x)NH_0(x)$, $L_\lambda=(E+R_1\lambda P_3(x,\lambda)+R_1\lambda N_\lambda)^{-1}$, $N_2=H_0^{-1}(x)(NH_1(x)-H_1(x)H_0^{-1}(x)NH_0(x))$, $H_2(x)=H_0^{-1}(x)[H_1'(x)+P_3(x)H_1(x)]$, $P(x)=n\omega$ бая из матриц $H_2(x)$, $P_{ij}(x)$ (i,j=1,2); $P_{i1}(x)=H_0^{-1}(x)P_i(x)H_0(x)$, $P_{i2}(x)=H_0^{-1}(x)P_i(x)H_1(x)-H_0^{-1}(x)P_i(x)H_0(x)$, $P_{i3}(x)=H_0^{-1}(x)P_i(x)H_0(x)$, $P_{i4}(x)=H_0^{-1}(x)P_i(x)H_0(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)H_0(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)P_i(x)$, $P_{i5}(x)=H_0^{-1}(x)$, $P_{i5}(x)=H_0^{-1}$

 $lpha(\lambda)$ — некоторые, возможно, различные квадратные матрицы с ограниченными по λ коэффициентами, x_0 — любое из чисел 0, 1/2, $\|\cdot\|$ — норма в $L_2[0,1]$.

Доказательство осуществляется использованием рассуждений из работы [4, с. 138-139].

Лемма 14. Пусть $\sigma(x,\lambda)$, $a(t,\tau)$, $b(t,\tau)$ — функции из леммы 11, $\theta(x)$ — одна из некоторого конечного набора функций из C[0,1]. Тогда каждая компонента вектор-функции $R_{1\lambda}q(x)$ представима в виде линейной комбинации с постоянными коэффициентами операторов $\int\limits_0^x e^{\lambda \omega_j(x-t)}T_1f(t)dt$, $\int\limits_x^{1/2} e^{-\lambda \omega_j(x-t)}T_1f(t)dt$ (j=1,2) и c ограниченными по λ коэффи-

циентами операторов $\sigma(x,\lambda)\int\limits_0^{1/2}\sigma(t,\lambda)T_2f(t)dt$, еде $T_1f(x)$ — один из операторов $\theta(x)f(x)$, $\theta(x+1/2)f(x+1/2)$, $\theta(1/2-x)f(1/2-x)$, $\theta(1-x)f(1-x)$, $T_2f(x)$ — один из операторов $\int\limits_0^{1/2-x}a(x,t)T_1f(t)dt$, $\int\limits_x^{1/2}b(x,t)T_1f(t)dt$ при всевозможных $\theta(x)$, $\sigma(x,\lambda)$, $\sigma(t,\lambda)$ и операторах T_1 и T_2 .

Доказательство. По определению компоненты вектор-функции $q_i(x)$ (j=1,2) можно представить в виде $(q_j(x))_k = \alpha_{kj}(x)f(x) + \beta_{kj}(x+1/2)f(x+1/2) + \delta_{kj}(1/2-x)f(1/2-x) + \gamma_{kj}(1-x)f(1-x),$ где $\alpha_{kj}(x)$, $\beta_{kj}(x)$, $\delta_{kj}(x)$, $\gamma_{kj}(x)$ — непрерывные функции. Взяв в лемме 12 в качестве $m_k(x) = \alpha_{ki}(x)f(x) + \beta_{ki}(x+1/2)f(x+1/2) + \delta_{ki}(1/2-x)f(1/2-x) + \gamma_{ki}(1-x)f(1-x)$ и обозначив через $\theta(x)$ любую из этих непрерывных функций, получим утверждение леммы.

Пусть $\frac{\omega_2}{\omega_1}=\beta,\ \beta>0$ и $\omega_1=d$, тогда $\sigma(x,\lambda)$ из леммы 11 есть одна из функций $e^{\lambda dx},\ e^{\beta\lambda dx},$ $e^{-eta\lambda d(x-1/2)},\ e^{-\lambda d(x-1/2)}.$ Обозначим $\sigma(x,\lambda_1,k)=\sigma(x,\lambda)_{|\lambda d=\lambda_1+ik};\ \omega(x,t,\lambda_1,k)$ — одну из функций: $arepsilon(x,t)e^{\lambda d(x-t)},\ arepsilon(x,t)e^{eta\lambda d(x-t)},\ arepsilon(t,x)e^{-\lambda d(x-t)},\$ при $\lambda d=\lambda_1+ik.$ Пусть $A_kg=\int_0^{1/2}A(x,t,\lambda_1,k)g(t)dt,$ где $A(x,t,\lambda_1,k)=\psi(x)\sigma(x,\lambda_1,k)\sigma(t,\lambda_1,k)$ или $A(x,t,\lambda_1,k)=\psi(x)\omega(x,t,\lambda_1,k),$ а $\psi(x)$ совпадает либо с 1, либо с одной из функций $h_j(x)$, $r_j(x)$, $r^j(x)$ $(j=1,\ldots,4)$ $(r_j(x)$ и $r^j(x)$ $(j=1,\ldots,4)$ — определены в лемме 3); $M_k g = \int_0^{1/2} M(x,t,\lambda_1,k) g(t) dt$, где $M(x,t,\lambda_1,k) = M(x,t,\lambda)_{|\lambda d=\lambda_1+ik}$, $M(x,t,\lambda)$ есть $M_{kj}(x,t,\lambda)$ при некоторых k,j; $M_{kj}(x,t,\lambda)$ $(k,j=(1,\ldots,4)$ являются компонентами интегрального оператора M_{λ} ; T — любой из операторов T_i (i=1,2) из леммы 14, p(x) — любой элемент матрицы P(x) из леммы 13.

Пусть $\lambda d \in \Pi_1(\delta)$, $\lambda d = \lambda_1 + ik$ и λ_1 принадлежит ограниченной области.

Лемма 15. Если $f(x) \in L_2[0,1]$, то при больших $|\lambda|$ и $x \in [0,1/2]$

$$R_{\lambda}(A)f_{|\lambda d=\lambda_1+ik} = \Omega(x,\lambda_1,k;f) + O\left(\frac{\|f\|}{k^2}\right),$$

еде $\Omega(x,\lambda_1,k;f)$ — есть конечная сумма с ограниченными по λ_1 и k коэффициентами всевозможных операторов: A_kTF , $A_kM_kA_kTF$, $\frac{1}{k}A_kTf$, $\frac{1}{k}A_kM_kTf$, $A_kp(x)(A_kTf)_{|x=x_0}$, $A_k M_k A_k p(x) (A_k T f)_{|x=x_0}$, $A_k p(x) (A_k M_k A_k T f)_{|x=x_0}$, $A_k M_k A_k p(x) (A_k M_k A_k T f)_{|x=x_0}$ $\times (A_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kp(x)M_k(A_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kA_kp(x)(A_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kp(x)M_k(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kA_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kp(x)M_k(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kp(x)M_k(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kp(x)M_k(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kp(x)M_k(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kp(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kM_kP(x)(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kP(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kM_kP(x)(A_kM_kA_kTf)_{|x=x_0}, \quad \frac{1}{k}A_kM_kP(x)(A_kM_kA_kTf)_{|x=x_0}, \\ \frac{1}{k}A_kM_k$ $rac{1}{k}A_kp(x)(A_kM_kTf)_{|x=x_0}$, $rac{1}{k}A_kM_kA_kp(x)(A_kM_kTf)_{|x=x_0}$. Причем, если ядро оператора A_k совпадает с $\psi(x)\omega(x,t,\lambda_1,k)$, то коэффициенты при A_kTf не зависят от λ_1 и k.

Здесь, если в любом из перечисленных операторов операторы A_k повторяются, то они могут иметь разные значения. Например, для оператора $A_k M_k A_k Tf$: оператор A_k , стоящий до M_k , может иметь ядро $\psi(x)\omega(x,t,\lambda_1,k)$, а оператор A_k , стоящий после M_k , — ядро $\psi(x)\sigma(x,\lambda_1,k)\sigma(t,\lambda_1,k)$, где $\sigma(x,\lambda_1,k) = e^{(\lambda_1+ik)x}, \ \sigma(t,\lambda_1,k) = e^{-\beta(\lambda_1+ik)(t-1/2)}, \$ функции $\psi(x)$ для операторов A_k , стоящих до и после M_k , могут не совпадать. То же самое касается и операторов M_k , если они повторяются.

Доказательство следует из лемм 3, 12–14.

Нетрудно получается следующий результат.

Лемма 16. Справедливы следующие оценки:

$$\sum_{k=1}^{\infty} |A_k T f_{|x=x_0|}|^2 \le C ||f||^2, \tag{18}$$

$$\sum_{k=1}^{\infty} |A_k T f_{|x=x_0|}|^2 \le C \|f\|^2,$$

$$\sum_{k=1}^{\infty} |A_k M_k A_k T f_{|x=x_0|}|^2 \le C \|f\|^2.$$
(18)

34 Научный отдел

Здесь в (18) ядра операторов A_k отличаются только параметром k, в (19) ядра операторов, стоящих перед M_k , отличаются лишь параметром k и таким же свойством обладают ядра операторов после M_k ; и те и другие при данном k могут различаться; ядра операторов M_k отличаются только параметром k; Tf — один и тот же оператор; постоянная C не зависит от λ_1 .

Так же, как и в работе [7, с. 81] представим полуполосу Π в виде объединения конечного числа различных групп равных между собой прямоугольников, границы которых $\Gamma_k(k=1,2,\ldots)$ (при возрастании k контуры удаляются от начала координат) состоят из отрезков, лежащих на прямых $\mathrm{Re}\,\lambda d=\pm h$, и из отрезков, параллельных вещественной оси длины 2h. Контуры Γ_k принадлежат $\Pi(\delta)$ и для каждого Γ_k одной конкретной группы существует натуральное t_k , что $\Gamma_k=\Gamma+it_k$, где Γ — некоторый фиксированный прямоугольный контур из этой группы. Аналогично построение проводится и для полуполосы $\{\lambda d: |\mathrm{Re}\,\lambda d| \leq h, \mathrm{Im}\,\lambda \mathrm{d} \leq 0\}$. Построенные в ней контуры обозначим $\Gamma_k(k=-1,-2,\ldots)$.

Лемма 17. Пусть J- любой конечный набор достаточно больших по модулю целых чисел. Тогда имеет место оценка

$$\left\| \sum_{k \in I} \int_{\Gamma_k} R_{\frac{\lambda}{d}}(A) d\lambda \right\| \le C,$$

равномерная по Ј.

Доказательство следует из рассуждений в леммах 8 и 9 из работы [3] и из лемм 15, 16.

Лемма 18. Система $c.n.\phi$. оператора A полна в $L_2[0,1]$.

Доказательство. Пусть $f \in L_2[0,1]$ ортогональна всем с.п.ф. оператора A, A^* — оператор, сопряженный к A. Тогда $R_\lambda(A^*)f$ — целая функция по λ . Из ограниченности при $\lambda\omega_1\in\Pi(\delta)$ операторов M_λ и из лемм 3, 12, 13 следует оценка $R_\lambda(A)f=O(1)$ и, следовательно, $R_\lambda(A^*)f=O(1)$. Отсюда следует, что $R_\lambda(A^*)f$ не зависит от λ , поэтому f=0 почти всюду.

Используя леммы 17 и 18 так же как в работе [8, с. 62-63] получаем основной результат.

Теорема 1. Если выполнены условия (13) и (17), то система с.п.ф. оператора A образует базис Рисса со скобками в $L_2[0,1]$. При этом в скобки нужно объединять те с.п.ф., которые отвечают λ_k , когда $\lambda_k d$ попадает в Γ_s при каждом s.

Аналогично и с использованием рассуждений из работы [3] получается

Теорема 2. Если выполнены условия (12) и (15), то система с.п.ф. оператора A образует базис Рисса в $L_2[0,1]$.

Работа выполнена при финансовой поддержке гранта для государственной поддержки ведущих научных школ $P\Phi$ (проект HШ-2970.2008.1).

Библиографический список

- 1. *Хромов А.П*. Об обращении интегральных операторов с ядрами, разрывными на диагоналях // Мат. заметки. 1998. Т. 64, N 6. С. 932–942.
- 2. Корнев В.В., Хромов А.П. О равносходимости разложений по собственным функциям интегральных операторов с ядрами, допускающими разрывы производных на диагоналях // Мат. сборник. 2001. Т. 192, № 10. С. 33–50.
- 3. *Курдюмов В.П., Хромов А.П.* О базисах Рисса из собственных функций интегрального оператора с переменным пределом интегрирования // Мат. заметки. 2004. Т. 76, № 1. С. 97–110.
- 4. *Хромов А.П*. Интегральные операторы с ядрами, разрывными на диагоналях // Мат. сборник. 2006. Т. 197, № 11 . С. 115–142.
- 5. *Хромов А.П.* Теорема равносходимости для интегродифференциальных и интегральных операторов //

- Мат. сборник. 1981. Т. 114(156), № 3. С. 378–405. 6. *Расулов М.Л.* Метод контурного интеграла и его применение к исследованию задач для дифференциальных уравнений. М.: Наука, 1964.
- 7. *Курдюмов В.П., Хромов А.П.* О базисах Рисса из собственных и присоединенных функций дифференциально-разностного оператора с многоточечным краевым условием // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2004. Вып. 6. С. 80–82.
- 8. *Курдюмов В.П., Хромов А.П.* О базисах Рисса из собственных и присоединенных функций дифференциально-разностного оператора с интегральными краевыми условиями // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2005. Вып. 7. С. 61–63.