

26. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: reactions // Сиб. журн. вычисл. математики. 2007. Наука, 1988. 733 с.

27. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике. 2-е изд. М.: Наука, 1978. 687 с.

28. Palymskiy I.B., Fomin P.A., Hieronymus H. The Rayleigh-Benard convection in gas with chemical

УДК 539.3

ОБ УСТАНОВИВШИХСЯ ПОПЕРЕЧНЫХ КОЛЕБАНИЯХ ПРЯМОУГОЛЬНОЙ ПЛАСТИНКИ ИЗ ОРТОТРОПНОГО МАТЕРИАЛА

О.М. Ромакина

Саратовский государственный университет, кафедра компьютерной алгебры и теории чисел E-mail: romakinaom@hotbox.ru

При предположениях классической теории Кирхгофа рассматривается задача об установившихся колебаниях тонкой прямоугольной пластинки из упругого ортотропного материала. Двумерная краевая задача сводится к одномерной модифицированным методом сплайн-коллокации. Одномерная задача решается численно устойчивым методом дискретной ортогонализации. Приведены результаты вычислений первых трех резонансных частот и графики, изображающие форму деформированной срединной поверхности, для трех вариантов условий на контуре.

Ключевые слова: метод сплайн-коллокации, ортотропная пластинка.

T. 10, № 4. P. 371-383.

29. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику. От маятника до турбулентности и хаоса. М.: Наука, 1988. 378 с.

30. Турбулентность. Принципы и применение / Под ред. У. Фроста, Т. Моулдена. М.: Мир, 1980. 535 с.

On the Steady Transverse Vibrations of a Rectangular **Orthotropic Plate**

O.M. Romakina

Saratov State University. Chair of Computer's Algebra and Theory of Numbers E-mail: romakinaom@hotbox.ru

The problem of the steady transverse vibrations of a rectangular orthotropic plate under the classical Kirchhoff theory assumptions is considered. Two-dimensional problem is reduced to one-dimensional via the modified spline-collocation method. One-dimensional problem is numerically solved with the stable discrete orthogonalization method. Numerical results for three resonance frequencies and plots for deformed middle-surface are presented for three types of boundary conditions on the edges.

Key words: modied method of spline collocation, ortotropic plate.

1. ПОСТАНОВКА ЗАДАЧИ. ОСНОВНЫЕ УРАВНЕНИЯ И СООТНОШЕНИЯ

Уравнение для определения прогиба w при динамическом изгибе ортотропной пластинки в рамках классической теории Кирхгофа, как известно [1], имеет вид

$$D_1 \frac{\partial^4 w}{\partial x^4} + 2D_3 \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_2 \frac{\partial^4 w}{\partial y^4} + \rho h \frac{\partial^2 w}{\partial t^2} = q(x, y, t), \tag{1}$$

где w = w(x, y, t) — прогиб точек срединной плоскости; h — толщина пластинки; t — время; координатные оси x и y направлены по главным направлениям анизотропии; D_i (i = 1, 2, 3) — соответствующие жесткости; *р* — плотность материала.

Будем рассматривать установившиеся колебания пластинки под действием поперечной нагрузки интенсивности

$$q(x, y, t) = q_0(x, y) \sin \omega t.$$
⁽²⁾

Тогда в безразмерных переменных $\xi = x/a, \eta = y/b$ (а и b — размеры пластинки в плане) для безразмерной амплитуды $W(\xi,\eta)$ прогиба $w(x,y,t) = h W(\xi,\eta) \sin \omega t$ из (1) с учетом (2) следует уравнение

$$\frac{\partial^4 W}{\partial \xi^4} + \mu_4 c^2 \frac{\partial^4 W}{\partial \xi^2 \partial \eta^2} + \mu_1 c^4 \frac{\partial^4 W}{\partial \eta^4} - \lambda^4 W = q_0(\xi, \eta) / D_1^*, \tag{3}$$

где $\lambda^4 = \rho h_0^2 a^2 \omega^2 / D_1^*$ — безразмерный частотный параметр.

Амплитудные значения внутренних моментов и обобщенных поперечных усилий выражаются через функцию W по формулам

$$M_x^* = -a^2 D_1^* \left(\frac{\partial^2 W}{\partial \xi^2} + \nu_2 c^2 \frac{\partial^2 W}{\partial \eta^2} \right), \quad M_y^* = -a^2 D_1^* \mu_1 \left(\nu_1 \frac{\partial^2 W}{\partial \xi^2} + c^2 \frac{\partial^2 W}{\partial \eta^2} \right), \quad H_{xy} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi \partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi \partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi^2} + c^2 \frac{\partial^2 W}{\partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi \partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi \partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi^2} + c^2 \frac{\partial^2 W}{\partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi \partial \eta^2} = -a^2 D_1^* \mu_2 c \frac{\partial^2 W}{\partial \xi^2} = -a^2 D_1^* d \frac{\partial^2 W}{\partial \xi^2} = -a^2 D_1^*$$

© О.М. Ромакина, 2010

$$N_x^* = -aD_1^* \left(\frac{\partial^3 W}{\partial \xi^3} + \mu_3 c^2 \frac{\partial^3 W}{\partial \xi \partial \eta^2} \right), \quad N_y^* = -aD_1^* c \left(\mu_3 \frac{\partial^3 W}{\partial \xi^2 \partial \eta} + \mu_1 c^2 \frac{\partial^3 W}{\partial \eta^3} \right). \tag{4}$$

В формулах (3) и (4) обозначено $\mu_1 = D_2^*/D_1^*$, $\mu_2 = 2D_k^*/D_1^*$, $\mu_3 = (D_3^* + 2D_k^*)/D_1^*$, $\mu_4 = 2D_3^*/D_1^*$, $D_i^* = D_i ha^{-4}$ (i = 1, 2, 3, k).

Граничные условия для функции W определяются способом закрепления и нагружения контура пластинки. Для численного решения соответствующей краевой задачи применим модифицированный метод сплайн-коллокации [2].

2. СПЛАЙН-АППРОКСИМАЦИЯ ФУНКЦИИ $W(\xi,\eta)$ ПРИ РАЗЛИЧНЫХ ГРАНИЧНЫХ УСЛОВИЯХ

Предположим, что на сторонах $\xi = \xi_0 = 0$ и $\xi = \xi_N = 1$ заданы произвольные граничные условия с единственным ограничением, что вид этих условий в пределах каждой стороны остается неизменным. Края $\eta = 0$ и $\eta = 1$ могут быть закреплены произвольно (в частном случае свободны) или загружены усилиями и моментами, меняющимися во времени пропорционально sin ωt .

Рассмотрим два возможных непротиворечивых варианта условий при $\xi = \xi_0$ и $\xi = \xi_N$. а) Пусть при $\xi = \xi_0$ и $\xi = \xi_N$ заданы прогиб и угол поворота

$$w(\xi_0, \eta, t) = h\tilde{w}_0(\eta)\sin\omega t, \qquad \frac{\partial w(\xi_0, \eta, t)}{\partial \xi} = h\tilde{\Theta}_0(\eta)\sin\omega t,$$
$$w(\xi_N, \eta, t) = h\tilde{w}_N(\eta)\sin\omega t, \qquad \frac{\partial w(\xi_N, \eta, t)}{\partial \xi} = h\tilde{\Theta}_N(\eta)\sin\omega t.$$
(5)

Функция $W(\xi,\eta)$ ищется в виде

$$W(\xi,\eta) = \sum_{j=-2}^{N+2} B_{5,j}(\xi) W_j(\eta),$$
(6)

где $B_{5,j}$ — нормализованные *B*-сплайны пятой степени [3], построенные по системе равноотстоящих узлов $\Delta = \{\xi_i\}, \xi_i = ih_x, i = -5, N+5, h_x = 1/N.$

Из условий (5) после отделения временной переменной получаются две системы линейных алгебраических уравнений, из которых функции $W_k(\eta)$ (k = -1, -2, N + 1, N + 2) выражаются через функции $W_r(\eta)$ $(r = \overline{0, N})$ и заданные значения прогиба и угла поворота при $\xi = \xi_0$ и $\xi = \xi_N$. Тогда после несложных преобразований разложение (6) записывается в виде

$$W(\xi,\eta) = \sum_{j=0}^{N} \varphi_j(\xi) W_j(\eta) + \tilde{M}(\xi,\eta),$$
(7)

где обозначено

$$\begin{split} \delta_{0} &= B_{5,-1}(\xi_{0})B_{5,-2}'(\xi_{0}) - B_{5,-1}'(\xi_{0})B_{5,-2}(\xi_{0}), \quad \delta_{N} = B_{5,N+1}(\xi_{N})B_{5,N+2}'(\xi_{N}) - B_{5,N+1}'(\xi_{N})B_{5,N+2}(\xi_{N}); \\ \tilde{M}_{0}(\xi,\eta) &= \delta_{0}^{-1} \bigg(- \big[B_{5,-2}(\xi)B_{5,-1}'(\xi_{0}) - B_{5,-1}(\xi)B_{5,-2}'(\xi_{0})\big] \tilde{w}_{0}(\eta) + \\ &+ \big[B_{5,-2}(\xi)B_{5,-1}(\xi_{0}) - B_{5,-1}(\xi)B_{5,-2}(\xi_{0})\big] \tilde{\Theta}_{0}(\eta) \bigg), \\ M_{N}(\xi,\eta) &= \delta_{N}^{-1} \bigg(\big[B_{5,N+1}(\xi)B_{5,N+2}'(\xi_{N}) - B_{5,N+2}(\xi)B_{5,N+1}'(\xi_{N})\big] \tilde{w}_{N}(\eta) - \\ &- \big[B_{5,N+1}(\xi)B_{5,N+2}(\xi_{N}) - B_{5,N+2}(\xi)B_{5,N+1}(\xi_{N})\big] \tilde{\Theta}_{N}(\eta) \bigg), \\ \tilde{M}(\xi,\eta) &= \tilde{M}_{0}(\xi,\eta) + \tilde{M}_{N}(\xi,\eta), \\ \varphi_{j}(\xi) &= B_{5,j}(\xi) + \delta_{0}^{-1} \bigg(B_{5,-2}(\xi) \big[B_{5,j}(\xi_{0})B_{5,-1}'(\xi_{0}) - B_{5,j}'(\xi_{0})B_{5,-1}(\xi_{0})\big] - \\ &- B_{5,-1}(\xi) \big[B_{5,j}(\xi_{0})B_{5,-1}'(\xi_{0}) - B_{5,j}'(\xi_{0})B_{5,-1}(\xi_{0})\big] \bigg) \qquad (j = \overline{0,2}), \\ \varphi_{j}(\xi) &= B_{5,j} \qquad (j = \overline{3,N-3}), \end{split}$$

Научный отдел

$$\varphi_{j}(\xi) = B_{5,j}(\xi) + \delta_{0}^{-1} \left(-B_{5,N+1}(\xi) \left[B_{5,j}(\xi_{N}) B_{5,N+2}'(\xi_{0}) - B_{5,j}'(\xi_{N}) B_{5,N+2}(\xi_{N}) \right] + B_{5,N+2}(\xi) \left[B_{5,j}(\xi_{N}) B_{5,N+1}'(\xi_{N}) - B_{5,j}'(\xi_{N}) B_{5,N+1}(\xi_{0}) \right] \right) \qquad (j = \overline{N-2,N}),$$

б) Если при $\xi = \xi_0$ и $\xi = \xi_N$ заданы распределенные изгибающие моменты и перерезывающие силы, то граничные условия будут иметь вид

$$M_x(\xi_0, \eta, t) = \overline{m}_0(\eta) \sin \omega t, \qquad \tilde{Q}_x(\xi_0, \eta, t) = \overline{p}_0(\eta) \sin \omega t,$$
$$M_x(\xi_N, \eta, t) = \overline{m}_N(\eta) \sin \omega t, \qquad \tilde{Q}_x(\xi_N, \eta, t) = \overline{p}_N(\eta) \sin \omega t.$$
(8)

Функция $W(\xi,\eta)$ по-прежнему ищется в виде (6). В этом случае из условий (8) для функций $W_k(\eta)$ (k = -1, -2, N + 1, N + 2) получаются не алгебраические, а дифференциальные уравнения, которые могут быть представлены в виде

$$\frac{d^2 W_{-r}}{d \eta^2} = m_{0,r}(\eta) + \sum_{k=0}^2 a_{r,k} W_k(\eta) + \sum_{k=0}^2 c_{r,k} \frac{d^2 W_k}{d \eta^2} + \sum_{s=1}^2 d_{r,s} W_{-s}(\eta),$$

$$\frac{d^2 W_{N+r}}{d \eta^2} = m_{N,r}(\eta) + \sum_{k=N-2}^N a_{r,k} W_k(\eta) + \sum_{k=N-2}^N c_{r,k} \frac{d^2 W_k}{d \eta^2} + \sum_{s=1}^2 d_{r,N+s} W_{N-s}(\eta) \qquad (r = 1, 2).$$
(9)

В формулах (9) функции $m_{0,r}(\eta), m_{N,r}(\eta)$ и постоянные $a_{r,k}, c_{r,k}, d_{r,s}$ и $d_{r,N+s}$ определяются соотношениями

$$\begin{split} m_{0,r}(\eta) &= (-1)^r (\delta_0 D_1^* a c^2)^{-1} \left(\frac{\tilde{m}_0(\eta)}{\nu_2 a} B'_{5,-3+r}(\xi_0) - \frac{\tilde{p}_0(\eta)}{\mu_3} B_{5,-3+r}(\xi_0) \right), \\ m_{N,r}(\eta) &= (-1)^r (\delta_N D_1^* a c^2)^{-1} \left(\frac{\tilde{m}_N(\eta)}{\nu_2 a} B'_{5,N+3-r}(\xi_N) - \frac{\tilde{p}_N \eta}{\mu_3} B_{5,N+3-r}(\xi_N) \right), \quad r = (0,1), \\ a_{p,k} &= (-1)^p (\delta_0 c^2)^{-1} \left(\nu_2^{-1} B'_{5,-3+p}(\xi_0) B''_{5,k}(\xi_0) - \mu_3^{-1} B_{5,-3+p}(\xi_0) B''_{5,k}(\xi_0) \right) \quad (k = \overline{0,2}), \\ a_{p,k} &= (-1)^p (\delta_N c^2)^{-1} \left(\nu_2^{-1} B'_{5,N+3-p}(\xi_N) B''_{5,k}(\xi_N) - \mu_3^{-1} B_{5,N+3-p}(\xi_N) B''_{5,k}(\xi_N) \right) \quad (k = \overline{N-2,N}), \\ c_{p,k} &= (-1)^p \delta_0^{-1} \left(B'_{5,-3+p}(\xi_0) B_{5,k}(\xi_0) - B_{5,-3+p}(\xi_0) B'_{5,k}(\xi_0) \right) \quad (k = \overline{N-2,N}), \\ d_{p,s} &= (-1)^p (\delta_0 c^2)^{-1} \left(\nu_2^{-1} B'_{5,-3+p}(\xi_0) B''_{5,-s}(\xi_0) - \mu_3^{-1} B_{5,-3+p}(\xi_0) B''_{5,-s}(\xi_0) \right) \quad (s = 1,2), \\ d_{p,s} &= (-1)^p (\delta_N c^2)^{-1} \left(\nu_2^{-1} B'_{5,N+3-p}(\xi_N) B''_{5,s}(\xi_N) - \mu_3^{-1} B_{5,N+3-p}(\xi_N) B''_{5,s}(\xi_N) \right) \\ (p = 1,2, \ s = N + 1, N + 2). \end{split}$$

3. СИСТЕМЫ РАЗРЕШАЮЩИХ УРАВНЕНИЙ И КРАЕВЫЕ ЗАДАЧИ ДЛЯ ФУНКЦИЙ $W_i(\eta)$

Системы разрешающих уравнений для функций $W_j(\eta)$ получаются методом коллокации. Для этого вводится система точек коллокации $\xi = \xi_i^*$ $(i = \overline{0, N})$, которые выбираются по правилу: $\xi_i^* = \xi_i + t/N$ $(i = \overline{0, N/2 - 1})$, $\xi_{N/2}^* = \xi_{N/2}$, $\xi_i^* = \xi_i - t/N$ $(i = \overline{N/2 + 1, N})$, 0 < t < 1.

Из требования, чтобы функция $W(\xi,\eta)$ в виде (7), если на сторонах $\xi = \xi_0$ и $\xi = \xi_N$ заданы кинематические условия (5), или в виде (6) при силовых условиях (8), вдоль прямых $\xi = \xi_i^*$ $(i = \overline{0, N})$ удовлетворяла уравнению (3), получается система N+1 обыкновенных дифференциальных уравнений четвертого порядка относительно неизвестных функций $W_j(\eta)$.

При условиях (5) эта система имеет вид

$$\sum_{j=0}^{N} \left(\left[\varphi_j^{(IV)}(\xi_i^*) - \lambda^4 \varphi_j(\xi_i^*) \right] W_j(\eta) + \mu_4 c^2 \varphi_j''(\xi_i^*) \frac{d^2 W_j}{d \eta^2} + \mu_1 c^4 \varphi_j(\xi_i^*) \frac{d^4 W_j}{d \eta^4} \right) = q_i^*(\eta) \quad (i = \overline{0, N}),$$
(10)

Механика

$$\text{где} \quad q_i^*(\eta) = q_0(\xi_i^*, \eta) / D_1^* - \left(\frac{\partial^4 \ \tilde{M}(\xi_i^*, \eta)}{\partial \ \xi^4} + \mu_4 c^2 \frac{\partial^4 \ \tilde{M}(\xi_i^*, \eta)}{\partial \ \xi^2 \partial \ \eta^2} + \mu_1 c^4 \frac{\partial^4 \ \tilde{M}(\xi_i^*, \eta)}{\partial \ \eta^4} - \lambda^4 \tilde{M}(\xi_i^*, \eta) \right)$$

В рассматриваемом случае система (10) является системой разрешающих уравнений для функций $W_j(\eta)(j=\overline{0,N})$. Далее эта система разрешается относительно старших производных функций $W_j(\eta)$ и стандартным приемом преобразуется в записанную в нормальной форме Коши систему обыкновенных дифференциальных уравнений первого порядка для новой неизвестной вектор-функции $\overline{Y}(\eta)$

$$\frac{d \,\overline{Y}(\eta)}{d \,\eta} = c\overline{Y}(\eta) + \overline{F}(\eta). \tag{11}$$

Компонентами функции $\overline{Y}(\eta) = \{y_r(\eta)\}$ $(r = \overline{0, 4N+3})$ являются функции $W_j(\eta)$ $(j = \overline{0, N})$ и их производные до третьего порядка включительно.

Граничные условия для $\overline{Y}(\eta)$ формулируются согласно условиям закрепления или нагружения сторон $\eta = 0$ и $\eta = 1$. Эти условия, выполнение которых требуется в концевых точках отрезков $\xi = \xi_i^*$ $(i = \overline{0, N})$, всегда могут быть представлены в виде

$$H_1\overline{Y}(0) = \overline{e_1}, \qquad H_2\overline{Y}(1) = \overline{e_2},$$
(12)

где матрицы $H_1 = \{h_{r,s}\}, H_2 = \{h_{r+2N+2,s}\}$ и векторы $\overline{e_1} = \{e_r\}, \overline{e_2} = \{e_{r+2N+2}\}$ $(r = \overline{0, 2N+1}, s = \overline{0, 4N+3})$ имеют известные компоненты.

В случае условий (8) из уравнения (3), записанного с учетом (6) вдоль прямых $\xi = \xi_i^*$ $(i = \overline{0, N})$, следует система уравнений

$$\sum_{j=-2}^{N+2} \left(\left[B_{5,j}^{(IV)}(\xi_i^*) - \lambda^4 B_{5,j}(\xi_i^*) \right] W_j(\eta) + \mu_4 c^2 B_{5,j}''(\xi_i^*) \frac{d^2 W_j}{d \eta^2} + \mu_1 c^4 B_{5,j}(\xi_i^*) \frac{d^4 W_j}{d \eta^4} \right) = q_i^*(\eta) \quad (i = \overline{0, N})$$

$$\tag{13}$$

где $q_i^*(\eta) = q_0(\xi_i^*, \eta)/D_1^*$. Из этих уравнений с помощью (9) исключаются вторые производные функций $W_k(\eta)$ (k = -2, -1, N + 1, N + 2) и четвертые производные этих функций, выражения для которых получаются двукратным дифференцированием формул (9). Полученная таким образом система уравнений разрешается относительно старших производных функций $W_j(\eta)$ $(j = \overline{0, N})$ и вместе с уравнениями (9) составляет полную систему для всех неизвестных функций в разложении (6). Далее эта система преобразуется в записанную в нормальной форме Коши систему уравнений первого порядка, которая в векторной форме имеет вид

$$\frac{d\,\overline{Z}}{d\,\eta} = C\overline{Z}(\eta) + \overline{F}(\eta). \tag{14}$$

Вектор-функция $\overline{Z}(\eta)$ в этом случае имеет компоненты

$$\overline{Z}(\eta) = \{z_r(\eta)\} = \left\{W_i, \frac{dW_i}{d\eta}, \frac{d^2W_i}{d\eta^2}, \frac{d^3W_i}{d\eta^3}, W_{-k}, W_{N+k}, \frac{dW_{-k}}{d\eta}, \frac{dW_{N+k}}{d\eta}\right\}$$
$$(r = \overline{0, 4N+7}, \ i = \overline{0, N}, \ k = 1, 2).$$

Для однозначного решения задачи к уравнению (14) необходимо добавить граничные условия, которые записываются в виде

$$H_1\overline{Z}(0) = \overline{e_1}, \qquad H_2\overline{Z}(1) = \overline{e_2}.$$
 (15)

Эти условия получаются из условий закрепления или нагружения сторон $\eta = 0$ и $\eta = 1$, выполнение которых в отличие от предыдущего случая требуется не только в точках коллокации, но и в угловых точках пластинки.

Аналогичным образом получаются краевые задачи, когда одна сторона пластинки деформирована определенным образом, а на другой задан закон изменения нагрузки, а также в случае условий смешанного типа — прогиб и изгибающий момент или угол поворота и поперечная нагрузка.

Численное решение задач типа (11)-(12) выполняется методом дискретной ортогонализации, который обеспечивает высокую точность результатов.

4. ПРИМЕРЫ ЧИСЛЕННОГО ИССЛЕДОВАНИЯ КОЛЕБАНИЙ КВАДРАТНОЙ ПЛАСТИНКИ

Изложенная в разд. 2, 3 методика была применена при численном исследовании колебаний квадратных пластинок под действием распределенной нагрузки интенсивности $q(x, y, t) = q_0 \sin \omega t$, $q_0 = \text{const.}$ Рассматривались пластинки из ортотропных материалов АГ-4с ($\rho = 1900 \text{к}\Gamma/\text{m}^3$, $E_1 = 2.1 \cdot 10^4 \text{М} \text{П} a$, $E_2 = 1.6 \cdot 10^4 \text{M} \text{\Pi} a$, $G = 0.42 \cdot 10^4 \text{M} \text{\Pi} a$, $\nu_2 = 0.07$ [4]) и дельта-древесины ($\rho = 1400 \text{к}\Gamma/\text{m}^3$, $E_1 = 3.05 \cdot 10^4 \text{M} \text{\Pi} a$, $E_2 = 0.467 \cdot 10^4 \text{M} \text{\Pi} a$, $G = 0.22 \cdot 10^4 \text{M} \text{\Pi} a$, $\nu = 0.02$ [1]) и стальная пластинка ($\rho = 7800 \text{к}\Gamma/\text{m}^3$, $E = 2 \cdot 10^5 \text{M} \text{\Pi} a$, $\nu = 0.3$) с геометрическими размерами a = b = 1.0м, h = 0.01м. Вычисления проводились для следующих вариантов закрепления контура пластинки: задача 1 — стороны $\xi = 0$ и $\eta = 0$ жестко закреплены, остальная часть контура свободна от закрепления и нагрузки; задача 2 — угловая точка $\xi = \eta = 1.0$ подкреплена шарниром, при $\xi = 0$ и $\eta = 0$ — жесткая заделка, стороны $\xi = 1$ и $\eta = 1$ свободны; задача 3 — контур пластинки свободен от нагрузки и закрепления за исключением угловых точек, которые подкреплены шарнирами.

В задачах 1 и 2 безразмерная амплитуда $W(\xi, \eta)$ аппроксимируется выражением

$$W(\xi,\eta) = \sum_{j=0}^{N+2} \varphi_j(\xi) W_j(\eta),$$

где функции $\varphi_j(\xi)$ определяются по формулам $\varphi_j(\xi) = B_{5,j}(\xi) + \delta_0^{-1} \{B_{5,-2}(\xi) | B_{5,j}(\xi_0) B'_{5,-1}(\xi_0) - B'_{5,j}(\xi_0) B_{5,-1}(\xi_0) | - B_{5,-1}(\xi) | B_{5,j}(\xi_0) B'_{5,-1}(\xi_0) - B'_{5,j}(\xi_0) B_{5,-1}(\xi_0)] \}$ $(j = \overline{0,2}), \ \varphi_j(\xi) = B_{5,j}(\xi)$ $(j = \overline{3, N+2}).$ В задаче 3 для $W(\xi, \eta)$ используется выражение (6).

Некоторые результаты этих расчетов приведены в табл. 1–3, где указаны приближенные значения ω_k (k = 1, 2, 3) первых трех резонансных частот $\omega_{rez}^{(k)} = \omega_k - \delta$, где $\delta < 0.01c^{-1}$ при k = 1 и $\delta < 1c^{-1}$, если k = 2, 3, номера таблиц соответствуют номерам рассмотренных задач. В этих же таблицах даны значения локальных экстремумов функции $w_*(\xi, \eta) = W(\xi, \eta) / \max |W(\xi, \eta)|$, которые характеризуют размеры «горбов» и «впадин» на изогнутой срединной поверхности колеблющейся пластинки.

Таблица 1

Материал	k	ω_k, c^{-1}	Локальные экстремумы $w_*(\xi,\eta)$
	1	106.05	$w_*(1.0; 1.0) = 1.000$
Сталь	2	407	$w_*(0.55; 0.55) = 0.388; w_*(1.0; 1.0) = -1.000$
	3	731	$w_*(0.40; 1.00) = 0.958; w_*(0.45; 0.45) = -0.624; w_*(1.0; 1.0) = -1.000$
	1	57.61	$w_*(1.0; 1.0) = 1.000$
AΓ-4c	2	233	$w_*(1.0; 0.45) = 0.529; w_*(1.0; 1.0) = -1.000$
	3	385	$w_*(0.40; 1.00) = 0.815; w_*(0.45; 0.45) = -0.568; w_*(1.0; 0.40) = 0.836;$
			$w_*(1.0; 1.0) = -1.000$
	1	59.25	$w_*(1.0; 1.0) = 1.000$
Дельта-древесина	2	149	$w_*(1.0; 0.45) = 0.744; w_*(1.0; 1.0) = -1.000$
	3	350	$w_*(1.0; 0.30) = -1.00; w_*(1.00; 1.00) = -0.981; w_*(1.0; 0.70) = 0.725$

Значения локальных экстремумов функции $w_*(\xi,\eta)$ при первых трех резонансных частотах. Задача 1

Таблица 2

Значения локальных экстремумов функции $w_*(\xi,\eta)$ при первых трех резонансных частотах. Задача 2

Материал	k	ω_k, c^{-1}	Локальные экстремумы $w_*(\xi,\eta)$
	1	232.00	$w_*(0.72; 0.72) = 1.000$
Сталь	2	603	$w_*(0.46; 0.46) = 1.00; w_*(0.7; 1.0) = -0.937$
	3	829	$w_*(0.36; 1.00) = -1.00; w_*(0.35; 1.00) = 0.199; w_*(0.80; 1.00) = 0.419$
	1	104.93	$w_*(1.0; 0.60) = 1.000$
АΓ-4c	2	320	$w_*(0.45; 0.45) = 0.945; w_*(1.0; 0.67) = -1.000; w_*(0.67; 1.00) = -0.788$
	3	568	$w_*(0.35; 0.75) = 0.498; w_*(0.65; 0.30) = -0.435; w_*(0.72; 1.00) = -1.00$
	1	104.97	$w_*(1.0; 0.58) = 1.000$
Дельта-древесина	2	324	$w_*(0.35; 0.55) = 0.465; w_*(0.50; 1.0) = 0.504; w_*(1.0; 0.72) = -1.00$
	3	492	$w_*(0.45; 0.70) = 0.636; w_*(0.50; 0.30) = -0.778; w_*(0.75; 1.00) = -0.590;$
			$w_*(1.00; 0.82) = -1.000$

Таблица 3

		1 0	
Материал	k	ω_k, c^{-1}	Локальные экстремумы $w_*(\xi,\eta)$
	1	108.94	$w_*(0.50; 0.50) = 1.000$
Сталь	2	679	$w_*(0.50; 0.50) = -1.00; \ w_*(0.50; 0.00) = 0.788$
	3	1411	$w_*(0.15; 0.00) = 0.547; w_*(0.00; 0.50) = -1.00; w_*(0.50; 0.50) = 0.072$
	1	59.16	$w_*(0.50; 0.50) = 1.000$
АΓ-4c	2	343	$w_*(0.50; 0.50) = 1.00; w_*(0.00; 0.50) = 0.882; w_*(0.50; 0.00) = 0.759$
	3	776	$w_*(0.00; 0.50) = -1.00; w_*(0.50; 0.50) = 0.174;$
			$w_*(0.50; 0.00) = -0.910; w_*(0.00; 0.15) = 0.803;$
			$w_*(0.15; 0.00) = 0.497$
	1	46.00	$w_*(0.50; 0.50) = 1.000$
Дельта-древесина	2	354	$w_*(0.00; 0.50) = 1.00; w_*(0.50; 0.0) = 0.228; w_*(0.50; 0.50) = -0.849$
	3	789	$w_*(0.50; 0.50) = 1.00; \ w_*(0.00; 0.15) = 0.794; \ w_*(0.00; 0.50) = -0.674;$
			$w_*(0.30; 0.00) = 0.795; w_*(0.50; 0.20) = -0.964$

Значения локальных экстремумов функции $w_*(\xi,\eta)$ при первых трех резонансных частотах. Задача 3

В табл. 1 и 2 для стали, а в табл. 3 и для ортотропных материалов значения $w_*(\xi, \eta)$ приводятся с учетом симметрии деформированного состояния.

Формы изогнутой поверхности для пластинки из АГ-4с при $\omega = \omega_k$ (k = 1, 2, 3) изображены на рис. 1–2.

Данные таблиц и графики позволяют оценить влияние анизотропии материала и способа закрепления на форму изогнутой поверхности и значения резонансных частот и локальных экстремумов прогиба.

Рис. 1. Форма поверхности пластинки из АГ-4с. Задача 1: *а* — при первой резонансной частоте, *б* — при второй резонансной частоте, *в* — при третьей резонансной частоте

Рис. 2. Форма поверхности пластинки из АГ-4с. Задача 2: а — при первой резонансной частоте, б — при второй резонансной частоте, в — при третьей резонансной частоте. Задача 3: г — при первой резонансной частоте, *д* — при второй резонансной частоте, *е* — при третьей резонансной частоте

Библиографический список

1. Лехницкий С.Г. Анизотропные пластинки. М.: ГИТТЛ, 1957. 463 с.

2. Недорезов П.Ф., Шевцова Ю.В., Ромакина О.М. Модифицированный метод сплайн-коллокации в задачах Методы сплайн-функций. М.: Наука, 1980. 352 с. изгиба прямоугольных пластинок // Математическое моделирование и краевые задачи: Тр. Второй Всерос.

науч. конф. Самара: Самар. гос. техн. ун-та, 2005. Ч.1. C. 203-209.

3. Завьялов Ю.С., Квасов Ю.И., Мирошниченко В.Л.

4. Амбарцумян С.А. Теория анизотропных пластин. М.: Наука, 1967. 268 с.