

МЕХАНИКА

УДК 539.4

ПАРАМЕТРЫ СМЕШАННЫХ ФОРМ ДЕФОРМИРОВАНИЯ ДЛЯ ТРЕЩИНЫ В ВИДЕ МАТЕМАТИЧЕСКОГО РАЗРЕЗА

В.Н. Шлянников, С.Ю. Кислова

Исследовательский центр проблем энергетики Казанского научного центра РАН E-mail: shlyannikov@mail.ru, svetlana_kislova@mail.ru

Разработан метод и приведены результаты расчетов упругопластических коэффициентов интенсивности напряжений в полном диапазоне смешанных форм деформирования от нормального отрыва до чистого сдвига. Рассмотрено состояние произвольно ориентированной прямолинейной трещины в виде математического разреза при двухосном нагружении различной интенсивности. Решение построено на использовании уравнения совместности деформаций, представленное через функцию напряжений Эри и ее производные. Поведение упругопластического материала соответствует модели Рамберга – Осгуда. На основе выполненных расчетов установлен характер влияния вида смешанных форм нагружения и пластических свойств материала, описываемых показателем деформационного упрочнения.

Ключевые слова: трещина, смешанные формы нагружения, математический надрез, параметр смешанности, поля напряжений, коэффициент интенсивности напряжений.

Mode Mixity Parameters for Mathematical Crack Type

V.N. Shlyannikov, S.Yu. Kislova

A method for calculating the elastic-plastic stress intensity factors for full range of mixed mode loading from tensile to shear crack is suggested. The state of arbitrary oriented straight-line crack in form of mathematical notch under biaxial loading is considered. The solution is based on a combination of both the compatibility strain equation and the Airy stress function with its derivatives. The elastic-plastic material behavior is represented by the Ramberg – Osgood model. On the base of obtaining results the influence of both mode mixity and material plastic properties, describing by strain hardening exponent, on the elastic-plastic stress intensity factors is stated.

Key words: crack, mixed mode loading, mathematical notch, mixity parameter, stress fields, stress intensity factor.

ВВЕДЕНИЕ

Сопротивление упругопластческих материалов разрушению характеризуется предельными значениями коэффициентов интенсивности напряжений (КИН), зависящими от вида нагружения. Наиболее широко экспериментальные данные и результаты решения плоских краевых задач представлены только для ситуации нормального отрыва, когда плоскость дефекта расположена по нормали к направлению действующей нагрузки. Однако на практике не совпадение направления приложения усилия и плоскости ориентации исходного дефекта является скорее правилом, чем исключением. Подобные задачи в механике трещин принадлежат к классу смешанных форм деформирования и разрушения. В открытой литературе отсутствует анализ поведения упругопластических КИН в полном диапазоне условий нагружения от нормального отрыва до чистого сдвига. В этой связи

лабленную внутренней прямолинейной сквозной трещиной длиной а, ориентированной под углом α к направлению номинального напряжения σ (рис. 1). Соотношение компонент номинальных напряжений, приложенных к торцам пластины характеризуется коэффициентом двухосности η . Полный диапазон смешанных форм деформирования может быть реализован за

счет различных комбинаций α и η . Так, частный случай нормального отрыва достигается при $\alpha = \pi/2$ для любого η , а чистый сдвиг возникает при $\alpha = \pi/4$ и $\eta = -1$. Все остальные ситуации относятся к условиям смешанных форм деформирования. В исходном со-

стоянии расстояние между противоположными берегами трещины и радиус кривизны ее вершины равны нулю, что соответствует определению математическо-

актуальной является задача расчета параметров смешанных форм деформирования для наиболее распространенной модели дефекта в виде математического разреза.

Рассмотрим пластину бесконечных размеров, находящуюся в условиях плоской деформации и ос-

Рис. 1. Пластина с трещиной при двухосном нагружении

1. УПРАВЛЯЮЩИЕ УРАВНЕНИЯ

Для рассматриваемой задачи уравнения равновесия в полярной системе координат r, θ имеют вид

го разреза.

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0, \qquad \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{2}{r} \sigma_{r\theta} = 0,$$

где $\sigma_{\theta\theta}$, σ_{rr} и $\sigma_{r\theta}$ — компоненты нормальных и сдвиговых напряжений.

Уравнения равновесия удовлетворяются тождественно при использовании функции напряжений Эри ϕ в форме:

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}, \qquad \sigma_{\theta\theta} = \frac{\partial^2 \phi}{\partial r^2}, \qquad \sigma_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta} \right). \tag{1}$$

В плоской задаче разрешающим относительно искомой функции Эри выступает одно уравнение совместности деформаций:

$$\frac{1}{r}\frac{\partial^2 \left(r\varepsilon_{\theta\theta}\right)}{\partial r^2} + \frac{1}{r^2}\frac{\partial^2 \varepsilon_{rr}}{\partial \theta^2} - \frac{1}{r}\frac{\partial \varepsilon_{rr}}{\partial r} - \frac{2}{r^2}\frac{\partial}{\partial r}\left(\frac{\partial \varepsilon_{r\theta}}{\partial \theta} \cdot r\right) = 0,\tag{2}$$

где $\varepsilon_{\theta\theta}$, ε_{rr} , $\varepsilon_{r\theta}$ — компоненты нормальных и сдвиговых деформаций. Поведение упругопластического материала при простом одноосном растяжении описывается законом Рамберга – Осгуда:

$$\varepsilon = \begin{cases} \sigma/E, & \sigma \le \sigma_0, \\ \sigma/E + \alpha_0 \left(\sigma/E\right)^n, & \sigma > \sigma_0, \end{cases}$$
(3)

где E — модуль упругости, σ_0 — предел текучести, α_0 и n — константы упрочнения.

Сингулярное решение, управляющее асимптотическим поведением полей напряжений в малой пластической зоне вершины трещины известно в литературе как модель Хатчинсона – Райса – Розенгрена (ХРР) [1, 2] и имеет следующий вид:

$$\sigma_{ij} = \sigma_0 K_M^p r^{-1/(n+1)} \tilde{\sigma}_{ij},$$

$$\sigma_e = \sigma_0 K_M^p r^{-1/(n+1)} \tilde{\sigma}_e,$$
(4)

где K_M^p — упругопластический коэффициент интенсивности напряжений, зависящий от параметра смешанности M_p , введенного Ши [3]. Безразмерные угловые функции напряжений $\tilde{\sigma}_{ij}$ и $\tilde{\sigma}_e$ зависят

только от полярного угла θ , показателя упрочнения n и M_p . В свою очередь, параметр смешанности M_p определяется как отношение окружной и сдвиговой компонент напряжений на продолжении плоскости расположения исходной трещины, т.е. при $\theta = 0$

$$M_p = \frac{2}{\pi} \tan^{-1} \left| \lim_{r \to \infty} \frac{\sigma_{\theta\theta} \left(\theta = 0\right)}{\sigma_{r\theta} \left(\theta = 0\right)} \right| = \frac{2}{\pi} \tan^{-1} \left| \frac{\tilde{\sigma}_{\theta\theta} \left(\theta = 0\right)}{\tilde{\sigma}_{r\theta} \left(\theta = 0\right)} \right|.$$
(5)

Обобщение модели Рамберга – Осгуда (3) на ситуацию сложного напряженного состояния приводит к следующим нелинейным соотношениям между компонентами напряжений и деформаций:

$$\varepsilon_{rr} = \sigma_{rr} - \nu \sigma_{\theta\theta} + \frac{3}{4} \alpha_0 \sigma_e^{n-1} \left(\sigma_{rr} - \sigma_{\theta\theta} \right),$$

$$\varepsilon_{\theta\theta} = \sigma_{\theta\theta} - \nu \sigma_{rr} + \frac{3}{4} \alpha_0 \sigma_e^{n-1} \left(\sigma_{\theta\theta} - \sigma_{rr} \right),$$

$$\varepsilon_{r\theta} = (1+\nu) \sigma_{r\theta} + \frac{3}{2} \alpha_0 \sigma_e^{n-1} \sigma_{r\theta},$$
(6)

где *ν* — коэффициент Пуассона. В уравнениях (4) и (6) *σ*_e представляет собой интенсивность напряжений или эквивалентное напряжение, которое для плоской деформации описывается формулой

$$\sigma_e^2 = \frac{3}{4} \left(\sigma_{rr} - \sigma_{\theta\theta} \right)^2 + 3\sigma_{r\theta}^2.$$

Подстановка физических соотношений (6) с учетом (1) в уравнение совместности деформаций (2) приводит к следующему разрешающему уравнению относительно функции Эри:

$$\nabla^{2}\nabla^{2}\phi + \frac{3\alpha_{0}}{4} \left\{ \left(\frac{1}{r^{2}} \frac{\partial^{2}}{\partial\theta^{2}} - \frac{1}{r} \frac{\partial}{\partial r} - \frac{\partial^{2}}{\partial r^{2}} \right) \left[\sigma_{e}^{n-1} \left(\frac{1}{r} \frac{\partial\phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}\phi}{\partial\theta^{2}} - \frac{\partial^{2}\phi}{\partial r^{2}} \right) \right] + \frac{4}{r^{2}} \frac{\partial^{2}}{\partial r\partial\theta} \left[r \sigma_{e}^{n-1} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial\phi}{\partial\theta} \right) \right] \right\} = 0.$$

$$(7)$$

Таким образом, определение компонент напряжений связано с решением нелинейного дифференциального уравнения в частных производных при соответствующих граничных условиях. Приближенное решение уравнения (7) отыскивается в виде разложения в ряд по радиусу в малой пластической области вершины трещины, как это предложено в [1]:

$$\phi(r,\theta) = r^s \tilde{\phi}(\theta) + r^t \tilde{\phi}_2(\theta) + \dots, \tag{8}$$

где первый член разложения является главным, т.е. s < t. Показатели степени s и t задают порядок особенностей решения в окрестности вершины трещины. Следуя методу решения плоских задач ХРРтипа, ограничимся рассмотрением только первого члена разложения (8), который имеет следующую структуру [1, 2]:

$$\phi(r,\theta) = K_M^p r^s \tilde{\phi}(\theta) , \qquad (9)$$

где K_M^p — упругопластический коэффициент интенсивности напряжений, r, θ — полярные координаты с центром в вершине трещины, $\tilde{\phi}(\theta)$ — безразмерная угловая функция напряжений Эри. Подстановка (9) в (1) дает новые выражения для компонент упругопластических напряжений:

$$\sigma_{rr} = K_M^p r^{s-2} \tilde{\sigma}_{rr}(\theta) = K_M^p r^{s-2} (s\tilde{\phi} + d^2 \tilde{\phi}/d\theta^2),$$

$$\sigma_{\theta\theta} = K_M^p r^{s-2} \tilde{\sigma}_{\theta\theta}(\theta) = K_M^p r^{s-2} s(1-s) \tilde{\phi},$$

$$\sigma_{r\theta} = K_M^p r^{s-2} \tilde{\sigma}_{r\theta}(\theta) = K_M^p r^{s-2} (1-s) d\tilde{\phi}/d\theta,$$

$$\sigma_e = K_M^p r^{s-2} \tilde{\sigma}_e(\theta),$$

(10)

где

$$\tilde{\sigma}_{rr}(\theta) = s\tilde{\phi} + \frac{d^2\phi}{d\theta^2}, \qquad \tilde{\sigma}_{\theta\theta}(\theta) = s(s-1)\tilde{\phi}, \qquad \tilde{\sigma}_{r\theta}(\theta) = (1-s)\frac{d\phi}{d\theta}.$$
(11)

Для условий маломасштабной текучести, когда зона пластичности в окрестности вершины трещины мала по сравнению с характерным размером тела, обычно принимается, что пластическая часть полной плотности энергии деформации в этой зоне существенно больше ее упругой составляющей.

Механика

Это допущение приводит к тому, что можно опустить бигармонический оператор в уравнении (7), которое после сокращения на общий множитель, зависящий от радиальной координаты r, становится однородным относительно угловой координаты θ . В результате после преобразований приходим к однородному нелинейному дифференциальному уравнению:

$$\left[\frac{d^2}{d\theta^2} - n\left(s-2\right)\left[n\left(s-2\right)+2\right]\right] \left[\tilde{\sigma}_e^{n-1}\left\{s(2-s)\tilde{\phi} + \frac{d^2\tilde{\phi}}{d\theta^2}\right\}\right] + 4(s-1)\left[n(s-2)+1\right]\frac{d}{d\theta}\left(\tilde{\sigma}_e^{n-1}\cdot\frac{d\tilde{\phi}}{d\theta}\right) = 0.$$

Это уравнение четвертого порядка может быть разрешено относительно старшей производной и преобразовано к системе четырех дифференциальных уравнений первого порядка:

$$\frac{d\tilde{\phi}}{d\theta} = \tilde{\phi}_1, \qquad \frac{d\tilde{\phi}_1}{d\theta} = \tilde{\phi}_2, \qquad \frac{d\tilde{\phi}_2}{d\theta} = \tilde{\phi}_3, \qquad \frac{d\tilde{\phi}_3}{d\theta} = \varphi\left(\tilde{\phi}, \tilde{\phi}_1, \tilde{\phi}_2, \tilde{\phi}_3\right), \tag{12}$$

где

$$\begin{split} \varphi\left(\tilde{\phi},\tilde{\phi}_{1},\tilde{\phi}_{2},\tilde{\phi}_{3}\right) &= -\left[\frac{3}{4}n\left(a_{2}\tilde{\phi}+\tilde{\phi}_{2}\right)^{2}+a_{4}\tilde{\phi}_{1}^{2}\right]^{-1}\left\{\tilde{\sigma}_{e}^{2}\left[\left(a_{2}-a_{1}+a_{3}\right)\tilde{\phi}_{2}-a_{1}a_{2}\tilde{\phi}\right]+\frac{n-3}{2}\varphi_{1}\times\right.\\ &\times\left(a_{2}\tilde{\phi}_{1}+\tilde{\phi}_{3}\right)+\frac{n-1}{2}\left(a_{2}\tilde{\phi}+\tilde{\phi}_{2}\right)\left[\frac{3}{2}\left(a_{2}\tilde{\phi}_{1}+\tilde{\phi}_{3}\right)^{2}+\frac{3}{2}\left(a_{2}\tilde{\phi}+\tilde{\phi}_{2}\right)a_{2}\tilde{\phi}_{2}+2a_{4}\left(\tilde{\phi}_{2}^{2}+\tilde{\phi}_{1}\tilde{\phi}_{3}\right)\right]+\\ &\left.+\frac{n+1}{2}\varphi_{1}\left(a_{2}\tilde{\phi}_{1}+\tilde{\phi}_{3}\right)+a_{3}\frac{n-1}{2}\varphi_{1}\tilde{\phi}_{1}+\frac{1}{\tilde{\sigma}_{e}^{2}}\frac{\left(n-3\right)\left(n-1\right)}{4}\varphi_{1}^{2}\left(a_{2}\tilde{\phi}+\tilde{\phi}_{2}\right)\right\},\\ &\left.\varphi_{1}\left(\tilde{\phi},\tilde{\phi}_{1},\tilde{\phi}_{2},\tilde{\phi}_{3}\right)=\frac{3}{2}\left(a_{2}\tilde{\phi}+\tilde{\phi}_{2}\right)\left(a_{2}\tilde{\phi}_{1}+\tilde{\phi}_{3}\right)+2a_{4}\tilde{\phi}_{1}\tilde{\phi}_{2},\\ &a_{1}=n\left(s-2\right)\left[n(s-2)+2\right],\qquad a_{2}=s\left(2-s\right),\qquad a_{3}=4\left(s-1\right)\left[n(s-2)+1\right],\qquad a_{4}=3\left(1-s\right)^{2}. \end{split}$$

Решение нелинейной системы обыкновенных дифференциальных уравнений (12) возможно при соответствующих краевых условиях на основе какого-либо численного метода. Как правило, для решения подобных задач применяют метод пристрелки и разностный метод. В настоящей работе использован разностный метод, подробные детали реализации которого в приложении к задаче смешанных форм деформирования изложены в работе [4].

2. ГРАНИЧНЫЕ УСЛОВИЯ

В рассматриваемой задаче упругопластического состояния наклонной трещины при произвольном двухосном нагружении (см. рис. 1) предполагается, что берега трещины $\theta = \pm \pi$ свободны от напряжений. Следовательно,

$$\tilde{\sigma}_{\theta\theta}(-\pi) = 0, \quad \tilde{\sigma}_{r\theta}(-\pi) = 0, \quad \text{или} \quad \tilde{\phi}(-\pi) = 0, \quad \tilde{\phi}_1(-\pi) = 0,$$

$$\tilde{\sigma}_{\theta\theta}(\pi) = 0, \quad \tilde{\sigma}_{r\theta}(\pi) = 0, \quad \text{или} \quad \tilde{\phi}(\pi) = 0, \quad \tilde{\phi}_1(\pi) = 0.$$
(13)

Для задач смешанных форм деформирования вводится дополнительное граничное условие, согласно которому окружная компонента нормальных напряжений имеет максимум в направлении предполагаемого развития трещины θ^* (см. рис. 1) [5]:

$$\frac{d\tilde{\sigma}_{\theta\theta}(\theta^*)}{d\theta} = 0, \quad \text{или} \quad \tilde{\phi}_1(\theta^*) = 0, \quad -\pi < \theta^* < \pi.$$
(14)

Подобная формулировка граничного условия соответствует первой теории прочности, или критерию максимальных нормальных напряжений.

3. ПАРАМЕТРЫ СМЕШАННОСТИ

Состояние пластины при двухосном нагружении с произвольно ориентированной трещиной в виде математического разреза (см. рис. 1) будем характеризовать величинами параметра смешанности M_p и упругопластического коэффициента интенсивности напряжений K_M^p . Параметр M_p определяется непосредственно по результатам расчета компонент напряжений через функцию Эри по формуле (5).

Для расчета упругопластического коэффициента интенсивности напряжений, входящего в формулы (4), (9), (10), воспользуемся свойством инвариантности *J*-интеграла Черепанова – Райса. Выберем первый контур интегрирования Γ_1 , замкнутый на берега трещины и расположенный в упругой области пластины, для которого вычислим значение *J*-интеграла:

$$J = \int_{\Gamma_1} \left(W dy - \sigma_{ij} n_j u_{i,x} ds \right) = \frac{1 - \nu^2}{E} \left(K_1^2 + K_2^2 \right) = \frac{\pi}{2E} \left(1 - \nu^2 \right) \left(\sigma^2 \right) \left[\left(1 + \eta^2 \right) - \left(1 - \eta^2 \right) \cos 2\alpha \right],$$
(15)

$$K_1 = \frac{\sigma_{yn}\sqrt{\pi a}}{2} \left[1 + \eta - (1 - \eta)\cos 2\alpha\right] \quad K_2 = \frac{\sigma_{yn}\sqrt{\pi a}}{2} \left(1 - \eta\right)\sin 2\alpha.$$
(16)

В формулах (15), (16) *K*₁ и *K*₂ — упругие коэффициенты интенсивности напряжений для форм нормального отрыва и поперечного сдвига соответственно.

Второй контур Г₂, охватывающий непосредственно вершину трещины, поместим в зоне пластичности и получим:

$$J = \int_{\Gamma_2} \left(W dy - \sigma_{ij} n_j u_{i,x} ds \right) = \alpha_0 (K_M^p)^{n+1} r^{(n+1)(s-2)+1} I_n \left(\theta^* \right), \tag{17}$$

где

$$I_n(\theta^*) = \int_{-\pi}^{\pi} \Omega(n,\theta) \, d\theta, \tag{18}$$

$$\Omega = \frac{n}{n+1} \tilde{\sigma}_e^{n+1} \cos\theta - \left[\tilde{\sigma}_{rr} \left(\tilde{u}_\theta - \frac{d\tilde{u}_r}{d\theta} \right) - \tilde{\sigma}_{r\theta} \left(\tilde{u}_r + \frac{d\tilde{u}_\theta}{d\theta} \right) \right] \sin\theta - \frac{1}{n+1} \left(\tilde{\sigma}_{rr} \tilde{u}_r + \tilde{\sigma}_{r\theta} \tilde{u}_\theta \right) \cos\theta,$$
$$\tilde{u}_r(\theta) = \frac{3}{4} \left(n+1 \right) \tilde{\sigma}_e^{n-1} \left[a_2 \tilde{\phi} + \tilde{\phi}_2 \right], \qquad \tilde{u}_\theta(\theta) = \frac{n+1}{n} \left[\frac{d\tilde{u}_r}{d\theta} - 3\tilde{\sigma}_e^{n-1} (1-s) \cdot \tilde{\phi}_1 \right].$$

Константа интегрирования $I_n(\theta^*)$ и компоненты перемещений \tilde{u}_r и \tilde{u}_{θ} вычисляются по найденным в результате решения системы уравнений (12) значениям функции Эри и ее производных с учетом дифференциальных зависимостей (11) для напряжений. Приравняем уравнения (15) и (17) и получим выражение для упругопластического коэффициента интенсивности напряжений при смешанных формах деформирования для трещины в виде математического разреза:

$$K_M^P = \left(\frac{1-\nu^2}{\alpha_0}\right)^{\frac{1}{n+1}} \left(\frac{0.5\pi}{I_n\left(\theta^*\right)}\right)^{\frac{1}{n+1}} \left\{\sigma_{2\left[(1+\eta^2)-(1-\eta^2)\cos 2\alpha\right]}\right\}^{\frac{1}{n+1}}.$$
(19)

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В каждом отдельном варианте из выполненной серии расчетов управляющим параметром являлась наперед заданная величина угла θ^* , определяющая направление предполагаемого развития трещины. Этот угол варьировался в пределах $0 \le \theta^* \le 75^\circ$ так, чтобы воспроизвести полный диапазон смешанных форм деформирования от нормального отрыва $M_p = 1$, $\theta^* = 0^\circ$ до чистого сдвига $M_p = 0$, $\theta^* = 71^\circ \div 75^\circ$ в зависимости от показателя деформационного упрочнения n, который изменялся от 1 (идеально упругий материал) до 15 (близкий к идеально пластичному материалу). В результате решения системы дифференциальных уравнений (12) с соответствующими граничными условиями (13), (14) для каждой комбинации θ^* и n найдены значения функции Эри и ее производных и далее по формулам (11) рассчитаны безразмерные компоненты упругопластических напряжений $\tilde{\sigma}_{ij}(\theta, \theta^*, n)$, а по ним, в свою очередь, по формулам (5) и (18), (19) определены параметр смешанности $M_p(\theta^*, n)$ и упругопластический коэффициент интенсивности напряжений $K_M^p(\theta^*, n)$.

На рис. 2 и 3 представлены угловые распределения безразмерных компонент напряжений $\tilde{\sigma}_{ij}(\theta, \theta^*, n)$ и пластических деформаций $\tilde{\varepsilon}_{ij}(\theta, \theta^*, n)$ в полном диапазоне смешанных форм деформирования от $M_p = 0$ (чистый сдвиг) до $M_p = 1$ (нормальный отрыв) для материалов различных пластических свойств. В распределениях окружной компоненты напряжений $\tilde{\sigma}_{\theta\theta}(\theta, \theta^*, n)$, как и следовало ожидать, имеет место максимум в направлении предполагаемого развития трещины $\theta = \theta^*(M_p, n)$, заданный граничными условиями (14).

Рис. 2. Угловые распределения компонент напряжений для n = 3 (*a*, *b*, *d*) и n = 13 (*б*, *c*, *e*)

180

180

180

Рис. 3. Угловые распределения компонент деформаций для n = 3 (*a*, *b*) и n = 13 (*b*, *c*)

Обобщением полученных результатов являются представленные на рис. 4 поверхности изменения константы интегрирования I_n (18) и упругопластического коэффициента интенсивности напряжений K_M^p (19) в зависимости от вида смешанных форм нагружения (M_p) и пластических свойств материала (n). Из этих данных следует, что по мере приближения к ситуации идеальной пластичности $n \to \infty$ влияние смешанных форм деформирования становится менее значимым. В то же время для показателя упрочнения в диапазоне $3 \le n \le 9$, что соответствует свойствам реальных конструкционных материалов, влияние вида нагружения, характеризуемого параметром смешанности M_p , является существенным.

Рис. 4. Поведение константы интегрирования (*a*) и КИН (*б*) для различных условий смешанных форм деформирования

Библиографический список

 Hutchinson J.W. Singular behaviour at the end of a tensile crack in a hardening material // J. of the Mechanics and Physic of Solids. 1968. V. 16. P. 13–31.
 Rice J.R., Rosengren G.F. Plane strain deformation near a crack tip in power law hardening material // J. of the Mechanics and Physic of Solids. 1968. V. 16. P. 1–12.
 Shih C.F. Small-scale yielding analysis of mixed plane strain crack problem // Fracture Analysis. 1974. ASTM STP 560. P. 187–210. 4. Shlyannikov V.N., Sakhabutdinov J.M. Evaluation of the elastic-plastic mixity parameters on the base of different crack propagation criteria. Communication 2. Solution and results // Strength of Materials. 2005. $N_{\rm P}$ 4. P. 46–63.

5. *Shlyannikov V.N., Dolgorukov V.A.* Analysis of the crack propagation under biaxial cyclic load taking into account their orientation // Failure analysis — theory and practice. Hungary EMAS. 1988. V. 2. P. 1095–1103.