

УДК 514.17

О ГЕОМЕТРИЧЕСКИХ СВОЙСТВАХ НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ, СОХРАНЯЮЩИХ ОРИЕНТАЦИЮ СИМПЛЕКСОВ

В. А. Клячин. Н. А. Чебаненко²

¹Клячин Владимир Александрович, доктор физико-математических наук, заведующий кафедрой компьютерных наук и экспериментальной математики, Волгоградский государственный университет, 400062, Россия, Волгоград, просп. Университетский, 100, klchnv@mail.ru, klyachin.va@volsu.ru ²Чебаненко Никита Алексеевич, ассистент кафедры компьютерных наук и экспериментальной математики, Волгоградский государственный университет, 400062, Россия, Волгоград, просп. Университетский, 100, windbagy@gmail.com

Несложно показать, что если непрерывное и открытое отображение сохраняет ориентацию всех симплексов, то оно является аффинным. В статье рассматривается класс непрерывных, открытых отображений $f:D\subset\mathbb{R}^m\to\mathbb{R}^n$, сохраняющих ориентацию симплексов из заданного подмножества множества симплексов с вершинами в области $D\subset\mathbb{R}^m$. В работе исследуются вопросы геометрического строения линейных прообразов таких отображений. В основу данного исследования положено доказываемое в статье ключевое свойство: если отображение сохраняет ориентацию симплексов из некоторого подмножества B множества всех симплексов с вершинами в области D, то прообраз гиперплоскости при таком отображении не может содержать вершины симплекса из B. На основе анализа структуры множества, обладающего таким свойством, можно получить результаты о его геометрическом строении. В частности, в статье доказано, что если непрерывное и открытое отображение сохраняет ориентацию достаточно широкого класса симплексов, то оно является аффинным. Для некоторых специальных классов треугольников в \mathbb{R}^2 с заданным условием на его максимальный угол показано, что прообраз прямой локально является графиком (в некотором случае липшицевой) функции в подходящей декартовой системе координат.

Ключевые слова: симплекс, непрерывное отображение, ориентация симплекса, монотонные функции.

DOI: 10.18500/1816-9791-2017-17-3-294-303

ВВЕДЕНИЕ

Классическая теорема Лебега [1, с. 199] утверждает, что неубывающая функция y=f(x) на отрезке [a,b] почти всюду дифференцируема. Это же справедливо и для любых монотонных функций. Сложность распространения этого результата на многомерный случай связана с тем, что в многомерном случае понятие монотонности отображения является неоднозначным. Например, отображение $f:D\to\mathbb{R}^n$ называется монотонным по Лебегу [2,3] если

$$\operatorname{osc}\{f, D'\} \leq \operatorname{osc}\{f, \partial D'\},\$$

для всякой подобласти $D' \subset D$. Здесь

$$\operatorname{osc}\{f, D'\} = \sup_{x, y \in D'} |f(x) - f(y)|.$$

Исследованию такого рода отображений посвящено множество публикаций. В частности, в работе С. К. Водопьянова [4] изучались монотонные по Лебегу функции и отображения на группах Карно и было установлено N-свойство Лузина таких отображений. В работах В. М. Миклюкова [5,6] было доказано, что монотонное по Лебегу отображение, принадлежащее весовому пространству Соболева, почти всюду имеет полный дифференциал при определенных условиях на весовую функцию. Отметим также работу [7], в которой свойство дифференцируемости доказывается для класса Q-гомеоморфизмов, которые в каком-то смысле близки к отображениям, монотонным по Лебегу. В то же время определенный интерес представляют отображения, для которых понятие монотонности имеет иную форму. Этот подход к понятию монотонности основан на понятии ориентации симплексов и, в частности, имеет важное значение в теории построения расчетных сеток [8].

Рассмотрим для примера одномерный случай. Будем говорить, что невырожденный отрезок $[P_0,P_1]$ числовой прямой имеет положительную ориентацию, если $P_0 < P_1$, и отрицательную ориентацию, если $P_0 > P_1$. Тогда функция y = f(x), заданная на отрезке [a,b], является неубывающей, если f(x) сохраняет ориентацию каждого отрезка $[P_0,P_1]\subset [a,b]$. Если аналогичное построение сделать для многомерного случая, получается следующее понятие, аналогичное понятию монотонного отображения по Лебегу. Пусть в \mathbb{R}^n , $n\geqslant 1$, заданы точки P_0,P_1,\ldots,P_n . Выпуклую оболочку этих точек назовем симплексом $S=S(P_0,\ldots,P_n)$. Симплекс называется невырожденным, если векторы $P_1-P_0,\,P_2-P_0,\ldots,P_n-P_0$ линейно независимы или, что то же самое

$$\det(P_1 - P_0, P_2 - P_0, \dots, P_n - P_0) \neq 0.$$

Здесь $\det(\xi_1, \xi_2, \dots, \xi_n)$ обозначает определитель матрицы, столбцами которой являются векторы $\xi_1, \xi_2, \dots, \xi_n \in \mathbb{R}^n$.

Будем говорить, что невырожденный симплекс $S(P_0, P_1, \ldots, P_n)$ имеет положительную (отрицательную) ориентацию, если $\det(P_1 - P_0, P_2 - P_0, \ldots, P_n - P_0) > 0$ ($\det(P_1 - P_0, P_2 - P_0, \ldots, P_n - P_0) < 0$). Пусть $D \subset \mathbb{R}^n$ — область.

Обозначим через S(D) совокупность всех невырожденных симплексов с вершинами из области D.

Зададимся вопросом определения геометрических и дифференциальных свойств непрерывных отображений $f:D\to\mathbb{R}^n$, которые сохраняют ориентацию симплексов из некоторого, заранее данного подмножества множества S(D). Более точно нас будет интересовать структура прообраза плоскости в \mathbb{R}^n . Отметим работу [9], в которой получены условия сохранения ориентации симплексов при их квазиизометричном преобразовании.

Обозначим множество непрерывных отображений $f:D\to \mathbb{R}^n$, сохраняющих ориентацию симплексов $S\in B\subset S(D)$ через $C_B(D)$. В работе авторов [10] была доказана следующая теорема.

Теорема 1. Если открытое отображение $f \in C_{S(D)}(D)$, то f — аффинное преобразование.

Из этого результата следует, что большинство отображений не может сохранять ориентацию всех симплексов. Рассмотрим некоторое подмножество $B \subset S(D)$.

1. КЛЮЧЕВОЕ СВОЙСТВО НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ

В [10] был доказан следующий ключевой результат о структуре прообраза гиперплоскости непрерывного отображения $f \in C_B(D)$. Мы приводим немного измененное доказательство этого утверждения, устранив тем самым некоторые не существенные пробелы в доказательстве.

Теорема 2. Если множество $B \subset S(D)$ открыто и отображение $f \in C_B(D)$ не является аффинным, то прообраз любой гиперплоскости не содержит вершин симплекса из B.

Доказательство. Предположим противное, т.е. предположим, что найдется невырожденный симплекс $S(P_0,\ldots,P_n)\in B$ такой, что $P_i\in f^{-1}(L),\ i=0,1,\ldots,n.$ Пусть $P_i'=f(P_i).$ Тогда $S(P_0',\ldots,P_n')$ — вырожденный симплекс, так как точки $P_i',\ i=0,\ldots,n$ лежат в одной гиперплоскости. Для всех $\varepsilon>0$, не ограничивая общности, будем считать, что симплексы

$$S^{\pm} = S(P'_0, \dots, P'_{n-1}, P'_n \pm \varepsilon \xi),$$

где ξ — нормаль к L, не вырождены. Ясно, что ориентации этих симплексов для $\varepsilon>0$ и для $\varepsilon<0$ противоположны. Положим

$$M^{\pm} = f^{-1} \left(\bigcup_{\varepsilon \geqslant 0} (P'_n \pm \varepsilon \xi) \right).$$

Множество M^{\pm} замкнуто, причем $P_n \in M^{\pm}$.

Рассмотрим окрестность $V(P_n)$ точки P_n такой, что для любой точки $P \in V(P_n)$ симплекс $S(P_0,\ldots,P_{n-1},P)$ имеет ту же ориентацию, что и симплекс $S(P_0,\ldots,P_n)$. Поскольку множество B открыто, то найдется окрестность $U(S(P_0,\ldots,P_n))\subset B$. В частности, можно найти такую окрестность $V'(P_n)\subset V(P_n)$, что для всех точек $P\in V'(P_n)$ выполняется $S(P_0,\ldots,P_{n-1},P)\in U(S(P_0,\ldots,P_n))$. По предположению теоремы отображение f открыто. Следовательно, образ окрестности $V'(P_n)$ есть окрестность точки $P'_n=f(P_n)$. Тогда можно найти такие

$$P^+ \in M^+ \cap \{V'(P_n) \backslash P_n\}, \qquad P^- \in M^- \cap \{V'(P_n) \backslash P_n\},$$

что для некоторых $\varepsilon_+, \varepsilon_- > 0$ будет выполнено $f(P^+) = P'_n + \varepsilon_+ \xi$, $f(P^-) = P'_n - \varepsilon_- \xi$. Из этих построений следует, что симплексы $S(P_0, \dots, P_{n-1}, P^+)$ и $S(P_0, \dots, P_{n-1}, P^-)$ принадлежат B и имеют одинаковую ориентацию, а симплексы $S(P'_0, \dots, P'_{n-1}, P'_n + \varepsilon_+ \xi)$ и $S(P'_0, \dots, P'_{n-1}, P'_n - \varepsilon_- \xi)$ имеют разные ориентации. Таким образом, мы пришли к противоречию с условием теоремы о том, что $f \in C(B)$. Теорема доказана.

В настоящей статье мы доказываем некоторые обобщения и следствия этих результатов. Предварительно дадим необходимые определения.

Пусть $m\leqslant n$ и $E=\{e_1,\ldots,e_{n-m}\}$ — некоторая система линейно-независимых векторов в \mathbb{R}^n . Будем говорить, что m-мерный симплекс $S(p_0,p_1,\ldots,p_m)$ с вершинами $p_i\in\mathbb{R}^n,\ i=0,\ldots,m$ имеет положительную (отрицательную) ориентацию относительно системы E, если $\det(p_1-p_0,\ldots,p_m-p_0,e_1,\ldots,e_{n-m})>0$ (< 0 соответственно).

Набор систем $E_1 = \{e_{11}, e_{12}, \dots, e_{1n-m}\}, \dots, E_k = \{e_{k1}, e_{k2}, \dots, e_{kn-m}\}$ назовем полным, если размерность суммы ортогональных дополнений к системам E_i равна n. Пусть Π_i , $i=1,\dots,N$, — m-мерная плоскость, ортогональная векторам из системы E_i , и $\pi_i: \mathbb{R}^n \to \Pi_i$ обозначает ортогональную проекцию на эту плоскость. Рассмотрим отображение $h_i = \pi_i \circ f: \mathbb{R}^m \to \Pi_i$.

Теорема 3. Пусть E_i , $i=1,\ldots,N$, — полный набор систем в \mathbb{R}^n и $f:\mathbb{R}^m\to\mathbb{R}^n$ — непрерывное отображение, сохраняющее ориентацию любого тмерного симплекса относительно каждой системы E_1,\ldots,E_N . Если все сквозные отображения h_i , $i=1,\ldots,N$, открыты, то f — аффинное отображение.

Доказательство. Покажем, что для каждого $i=1,\ldots,N$ отображение $h=h_i$ сохраняет ориентацию любого симплекса. Чтобы в этом убедиться построим положительно ориентированный ортонормированный базис b_1,\ldots,b_n в \mathbb{R}^n таким образом, чтобы векторы b_1,\ldots,b_m были ортогональны векторам e_{i1},\ldots,e_{in-m} , причем

$$\det(b_1^i, \dots, b_m^i, e_{i1}, \dots, e_{in-m}) > 0.$$

Пусть симплекс $S = S(p_0, \ldots, p_m)$ с вершинами в D имеет положительную ориентацию. В силу условия теоремы симплекс $S' = S(f(p_0), \ldots, f(p_m))$ тоже имеет положительную ориентацию относительно системы E_i , т.е.

$$\det(f(p_1) - f(p_0), \dots, f(p_m) - f(p_0), e_{i1}, \dots, e_{in-m}) > 0.$$

При переходе к базису $\{b_k^i,\ k=1,\ldots,n\}$ это условие не изменится. В то же время в новом базисе такой определитель будет равен

$$\det(h(p_1) - h(p_0), \dots, h(p_m) - h(p_0)) > 0.$$

В силу теоремы 1 мы можем сделать вывод, что сквозное отображение $h:\mathbb{R}^m \to \Pi_i$ является аффинным. Отсюда получаем, что для каждого $i=1,\dots,N$ и каждого $k=1,\dots,m$ скалярное произведение $\langle f(u),b_k^i\rangle$ является аффинной функцией переменной $u\in D$.

Рассмотрим произвольную пару векторов v, w такую, что точки u+w+v, u+v, u+w, u принадлежат области D. Построим вектор

$$G = f(u + v + w) - f(u + v) - f(u + w) + f(u).$$

Из аффинности функции $\langle f(u), b_k^i \rangle$ следует, что $\langle G, b_k^i \rangle = 0$. А из условия полноты набора систем E_i можно сделать вывод, что $\langle G, y \rangle = 0$ для любого $y \in \mathbb{R}^n$. Откуда следует, что G = 0 и отображение f аффинно.

Замечание. Поскольку функция $\det(p_0-p_1,\ldots,p_n-p_0)$ непрерывна по переменным p_0,\ldots,p_n , то из того, что непрерывное отображение сохраняет ориентацию заданного симплекса, следует, что сохраняется ориентация всех симплексов из некоторой окрестности данного симплекса. Это, в свою очередь, влечет, что множество симплексов, ориентация которых сохраняется данным непрерывным отображением открыто. Поэтому мы ограничимся рассмотрением открытых подмножеств $B \subset S(D)$.

Теорема 4. Пусть E_i , $i=1,\ldots,N$, — полный набор систем в \mathbb{R}^n и $f:\mathbb{R}^m\to\mathbb{R}^n$, $m\leqslant n$ — непрерывное отображение, сохраняющее ориентацию любого m-мерного симплекса из некоторого открытого подмножества $B\subset S(D)$. Если все сквозные отображения h_i , $i=1,\ldots,N$, открыты, а отображение f не является аффинным, то прообраз любой гиперплоскости не содержит вершин симплекса из B.

Доказательство. Пусть $\Pi_i,\ i=1,\dots,N,\ -m$ -мерная плоскость, ортогональная векторам из системы $E_i,\$ и $\pi_i:\mathbb{R}^n\to\Pi_i$ обозначает ортогональную проекцию на эту плоскость. Рассмотрим отображение $h=\pi_i\circ f:\mathbb{R}^m\to\Pi_i$. Как и при доказательстве теоремы $3,\$ легко убедиться, что отображение h сохраняет ориентацию любого симплекса из множества $B\subset S(D)$. Тогда утверждение теоремы следует из теоремы 2.

Замечание. Используя теоремы из [11] о структуре множеств с ограничениями на его контингенцию, можно получить некоторую информацию о структуре прообразов прямых линий отображений, сохраняющих ориентацию симплексов. Этот метод был использован в работе [10]. В настоящей работе мы будем использовать другой подход.

2. СЛЕДСТВИЯ

Рассмотрим в пространстве \mathbb{R}^m некоторую прямую L. Обозначим через α некоторое число из интервала $(0,\pi)$. Пусть B_{α} обозначает открытое множество симплексов из S(D), у которых имеется ребро, образующее угол $\varphi < \alpha$ с прямой L.

Теорема 5. Если отображение $f:D\subset\mathbb{R}^m\to\mathbb{R}^m$ открыто и принадлежит классу $C_{B_\alpha}(D)$, то оно аффинно.

Доказательство. Предположим, что отображение f не является аффинным. В силу теорем 2 и 4 на прообразе $f^{-1}(\Pi)$ гиперплоскости $\Pi \subset \mathbb{R}^m$ не существует симплекса из множества B_{α} . Это означает, что все ребра симплексов с вершинами на $f^{-1}(\Pi)$ образуют угол с прямой L не меньше, чем α . Рассмотрим некоторую точку $x_0 \in D$ и построим семейство A гиперплоскостей, проходящих через точку $f(x_0)$. Положим

$$\mathscr{A} = \bigcup_{\Pi \in A} f^{-1}(\Pi).$$

В силу предположения любое ребро вида x_0x_1 с $x_1 \in \mathscr{A}$ имеет угол с прямой L не меньше, чем α . В то же время если точка $x_2 \in D$ такая, что отрезок x_0x_2 образует угол с прямой L меньше, чем α , то найдется гиперплоскость $\Pi \in A$ такая, что $f(x_2) \in \Pi$. Поэтому $x_2 \in \mathscr{A}$. Полученное противоречие доказывает теорему. \square

Зафиксируем $\pi/2 < \alpha_0 < \pi$. Рассмотрим в области $D \subset \mathbb{R}^2$ совокупность треугольников $S(P_0, P_1, P_2)$, имеющих максимальный угол $\alpha(S) < \alpha_0$. Обозначим эту совокупность треугольников через $S_{\alpha_0}(D)$.

Теорема 6. Если $\alpha_0 > 2\pi/3$, а отображение $f: D \subset \mathbb{R}^2 \to \mathbb{R}^2$ открыто и принадлежит классу $C_{S_{\alpha_0}}(D)$, то прообраз любой прямой локально представляет собой график функции в подходящей декартовой системе координат.

Доказательство. Будем читать, что отображение f не является аффинным. Пусть $x_0, x_1 \in D$. Построим окружности, проходящие через эти точки, с радиусом

$$R = \frac{|x_1 - x_0|}{2\sin\alpha_0}.$$

Центры этих окружностей лежат на серединном перпендикуляре к отрезку x_0x_1 и симметричны относительно этого отрезка. При этом касательные к этим окруж-

ностям в точках x_0 , x_1 образуют угол $\pi-\alpha_0$ с отрезком x_0x_1 . Этот угол меньше, чем $\pi/4$, в силу предположения теоремы. Наконец, обозначим через $M_{x_0x_1}$ пересечение соответствующих кругов, а через $\Pi_{x_0x_1}$ полосу, образуемую точками, расположенными между прямыми, ортогональными отрезку x_0x_1 и проходящими через его концы (рис. 1). Из свойств окружностей следует, что треугольник вида $x_0x_1x_2$, $x_2\in\Pi_{x_0x_1}\setminus M_{x_0x_1}$ имеет угол $\angle x_0x_2x_1<\alpha_0$. Остальные углы этого треугольника острые и потому меньшие, чем α_0 .

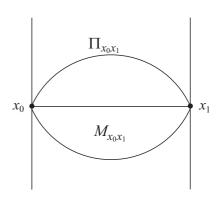


Рис. 1. Множества $\Pi_{x_0x_1}$ и $M_{x_0x_1}$ Fig. 1. The sets $\Pi_{x_0x_1}$ and $M_{x_0x_1}$

Пусть $L \subset \mathbb{R}^2$ — некоторая прямая и $p_0, p_1 \in f^{-1}(L)$ — две произвольные точки на ее про-

образе. Покажем, что пересечение $f^{-1}(L)\cap \Pi_{p_0p_1}$ представляет собой график функции в системе координат, в которой одна ось направлена вдоль прямой p_0p_1 , а другая ей ортогональна.

Согласно теореме 2 не существует треугольника с вершинами на $f^{-1}(L)$ и с углами, меньшими чем α_0 . Значит, пересечение

$$f^{-1}(L) \cap (\Pi_{p_0p_1} \setminus M_{p_0p_1})$$

пусто, так как, в противном случае, можно было бы найти треугольник вида $p_0p_1p_2$, $p_2\in f^{-1}(L)\cap (\Pi_{p_0p_1}\setminus M_{p_0p_1})$ с углом $\angle p_0p_2p_1<\alpha_0$. Таким образом, имеет место включение

$$f^{-1}(L) \cap \Pi_{p_0p_1} \subset M_{p_0p_1}$$
.

Предположим, что найдутся две точки $p,p'\in M_{p_0p_1}\cap f^{-1}(L)$, лежащие на одном отрезке, ортогональном прямой p_0p_1 , причем, не ограничивая общности, будем счи-

тать, что точка пересечения прямых pp' и p_0p_1 находится ближе к точке p_1 (рис. 2). Также предположим, что если точки $p,\ p'$ лежат по одну сторону от отрезка p_0p_1 , то p будет расположена дальше от него, чем точка p'. В этом случае

$$p_1$$
 p_2 p_3

$$p' \in \Pi_{p_0p}$$
.

Покажем, что $\angle pp'p_0 < \alpha_0$. Действительно, если точки pp' расположены по разные стороны отрез-

ка p_0p_1 , то треугольник p_0pp' — остроугольный, а значит, его углы меньше α_0 . Если точки pp' расположены по одну сторону от отрезка p_0p_1 , то угол $\angle pp'p_0$ меньше тупого угла между прямой pp' и прямой, соединяющей точку p_0 и середину граничной дуги $M_{p_0p_1}$. Несложно вычислить, что этот угол равен $\pi - \alpha_0/2$ и в силу предположения $\alpha_0 > 2\pi/3$ этот угол меньше α_0 . Мы получили противоречие с утверждением теоремы 2. Таким образом, всякая прямая, ортогональная отрезку p_0p_1 , может пересекать $f^{-1}(L)$ не более чем в одной точке. Теорема доказана.

Теорема 7. Если $\alpha_0 > 3\pi/4$, а отображение $f: D \subset \mathbb{R}^2 \to \mathbb{R}^2$ открыто и принадлежит классу $C_{S_{\alpha_0}}(D)$, то прообраз любой прямой локально представляет собой график липшицевой функции в подходящей декартовой системе координат.

Доказательство. Покажем, что угол наклона отрезка с концами на $f^{-1}(L)$ не превосходит $2(\pi-\alpha_0)<\pi/2$. Тем самым будет доказано, что постоянная Липшица графика соответствующей функции не превышает $\operatorname{tg} 2(\pi-\alpha_0)<+\infty$. Рассмотрим некоторую точку $p\in M_{p_0p_1}\cap f^{-1}(L)$. Угол между отрезками p_0p_1 и p_0p обозначим через β . Ясно, что $\beta<\pi-\alpha_0$. Пусть p' — проекция точки p на отрезок p_0p_1 . Выберем произвольную точку $p^*\in f^{-1}(L)$, чья проекция на отрезок p_0p_1 лежит между p_0 и p'. Угол между прямой отрезка p^*p и прямой отрезка p_0p_1 очевидно не превосходит суммы угла β и угла между прямой отрезка p_0p_1 и касательной к одной из граничных дуг окружностей множества M_{p_0p} в точке p, т. е. не превосходит суммы $\beta+\pi-\alpha_0<2(\pi-\alpha_0)<\pi/2$. Тем самым теорема доказана.

Теорема 8. Пусть $\alpha_0 > \pi/2$, а отображение $f: D \subset \mathbb{R}^2 \to \mathbb{R}^2$ открыто и принадлежит классу $C_{S_{\alpha_0}}(D)$. Пусть $p_0, p_1 \in f^{-1}(L)$ — две произвольные точки на прообразе прямой $L \subset \mathbb{R}^2$. Тогда найдется точка $p_1' \in [p_0, p_1]$ такая, что пересечение $f^{-1}(L) \cap \Pi_{p_0p_1'}$ локально представляет собой график функции в подходящей декартовой системе координат.

Доказательство. Рассмотрим точку $p_1' \in [p_0, p_1']$ такую, что

$$d \cdot \operatorname{ctg}^2(\pi - \alpha_0) > \Delta, \tag{1}$$

где $\Delta=|p_1'-p_0|,\ 2d=|p_1-p_0|.$ Предположим, что прямая ℓ , ортогональная отрезку p_0p_1 , пересекает отрезок в точке q так, что $|q-p_0|=\delta<\Delta$. Покажем, что тогда эта прямая пересекает множество $f^{-1}(L)$ не более в одной точке. Предположим, что

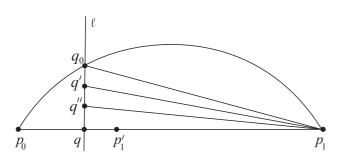


Рис. 3. Построение точки q_0 Fig. 3. Construction of the point q_0

Рассмотрим треугольник $p_1q'q''$ (рис. 3). Для доказательства теоремы достаточно показать, что угол $\angle q'q''p_1 < \alpha_0$ или угол $\angle q''q'p_1 < \alpha_0$. Если точки q', q'' лежат по разные стороны от отрезка p_0p_1 , оба эти угла острые, а значит, не превосходят α_0 . Будем считать, что точки q', q'' лежат по одну сторону от отрезка p_0p_1 ,

нашлись две точки $q', q'' \in f^{-1}(L) \cap \ell$.

причем будем предполагать, что точка q'' находится ближе к этому отрезку, чем точка q'. Пусть q_0 — точка пересечения прямой ℓ с граничной дугой окружности множества $M_{p_0p_1}$, причем той, которая ограничивает половину $M_{p_0p_1}$, в которой лежат точи q', q''. Тогда угол $\angle p_1q''q'$ не превосходит тупого угла между прямой ℓ и отрезком p_1q_0 . А этот угол, в свою очередь, будет меньше, чем α_0 , если $\operatorname{tg}\angle qq_0p_1>\operatorname{tg}(\pi-\alpha_0)$. Прямым вычислением несложно показать, что

$$tg \angle qq_0p_1 = \frac{\sqrt{d^2ctg^2(\pi - \alpha_0) + (2d - \delta)\delta} + dctg(\pi - \alpha_0)}{\delta} > \frac{dctg(\pi - \alpha_0)}{\delta} > \frac{dctg(\pi - \alpha_0)}{\delta}.$$

Откуда, используя (1), заключаем, что

$$\operatorname{tg} \angle qq_0p_1 > \operatorname{tg}(\pi - \alpha_0).$$

Теорема доказана.

Благодарности. Работа выполнена при финансовой поддержке РФФИ (проект N = 15-41-02517).

Библиографический список

- 1. *Натансон И. П.* Теория функций вещественной переменной. М.: Наука; Гл. ред. физ.-матем. лит., 1974. 480 с.
- 2. Lebesgue H. Sur le probleme de Dirichlet // Rend. Circ. Palermo. 1907. Vol. 27. P. 371–402.
- 3. *Mostow G. D.* Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms // Publ. Math, de l'Institute des Hautes Etudes Scientifiques. 1968. № 34. P. 53–104.
- 4. *Водопьянов С. К.* Монотонные функции и квазиконформные отображения на группах Карно // Сиб. матем. журн. 1996. Т. 37, № 6. С. 1269–1295.
- 5. Миклюков В. М. Введение в негладкий анализ. Волгоград: Изд-во ВолГУ, 2008. 424 с.
- 6. *Миклюков В. М.* О некоторых признаках существования полного дифференциала // Сиб. матем. журн. 2010. Т. 51, № 4. С. 805–814.
- 7. *Салимов Р. Р.* Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений // Изв. РАН. Сер. матем. 2008. Т. 72, № 5. С. 141–148. DOI: 10.4213/im2675.
- 8. *Прохорова М. Ф.* Проблемы гомеоморфизма, возникающие в теории построения сеток // Тр. ИММ УрО РАН. 2008. Т. 14, № 1. С. 112–129.
- 9. *Болучевская А. В.* Сохранение ориентации симплекса при квазиизометричном отображении // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 13, вып. 1, ч. 2. С. 20–23.
- 10. *Клячин В. А., Чебаненко Н. А.* О линейных прообразах непрерывных отображений, сохраняющих ориентацию симплексов // Вестн. Волгоград. гос. ун-та. Сер. 1: Математика. Физика. 2014. № 3 (22). С. 56–60. DOI: 10.15688/jvolsu1.2014.3.6.
- 11. Сакс С. Теория интеграла. М.: Изд-во иностр. лит., 1949. 495 с.

Образец для цитирования:

Клячин В. А., Чебаненко Н. А. О геометрических свойствах непрерывных отображений, сохраняющих ориентацию симплексов // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2017. Т. 17, вып. 3. С. 294–303. DOI: 10.18500/1816-9791-2017-17-3-294-303.

On the Geometric Structure of the Continuos Mappings Preserving the Orientation of Simplexes

V. A. Klyachin¹, N. A. Chebanenko²

¹Vladimir A. Klyachin, ORCID: 0000-0003-1922-7849, Volgograd State University, 100, Prosp. Universitetsky, Volgograd, Russia, 400062, klchnv@mail.ru, klyachin.va@volsu.ru

²Nikita A. Chebanenko, ORCID: 0000-0002-8462-5619, Volgograd State University, 100, Prosp. Universitetsky, Volgograd, Russia, 400062, windbagy@gmail.com, kiem@volsu.ru

It is easy to show that if a continuous open map preserves the orientation of all simplexes, then it is affine. The class of continuous open maps $f:D\subset\mathbb{R}^m\to\mathbb{R}^n$ that preserve the orientation of simplexes from a given subset of a set of simplexes with vertices in the domain $D\subset\mathbb{R}^m$ is considered. In this paper, questions of the geometric structure of linear inverse images of such mappings are studied. This research is based on the key property proved in the article: if a map preserves the orientation of simplexes from some subset B of the set of all simplexes with vertices in the domain D, then the inverse image of the hyperplane under such a mapping can not contain the vertices of a simplex from B. Based on the analysis of the structure of a set possessing this property, one can obtain results on its geometric structure. In particular, the paper proves that if a continuous open map preserves the orientation of a sufficiently wide class of simplexes, then it is affine. For some special classes of triangles in \mathbb{R}^2 with a given condition on its maximal angle it is shown that the inverse image of a line is locally a graph (in some case a Lipschitzian) of a function in a suitable Cartesian coordinate system.

Key words: simplex, orientation of simplex, continuous mapping, monotone function.

Acknowledgements: This work was supported by the Russian Foundation for Basic Research (project no. 15-41-02517).

References

- 1. Natanson I. P. *Teoriya funkciy veschestvennoy peremennoy* [Theory functions of real variable]. Moscow, Nauka, 1974. 480 p. (in Russian).
- 2. Lebesgue H. Sur le probleme de Dirichlet. Rend. Circ. Palermo, 1907, vol. 27, pp. 371-402.
- 3. Mostow G. D. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. *Publ. Math, de l'Institute des Hautes Etudes Scientifiques*, 1968, no. 34, pp. 53–104
- 4. Vodop'yanov S. K. Monotone functions and quasiconformal mappings on Carnot groups. *Siberian Math. J.*, 1996, vol. 37, no. 6, pp. 1113–1136. DOI: 10.1007/BF02106736.
- 5. Miklyukov V. M. *Vvedenie v negladkiy analiz* [Introduction in nonsmooth analysis]. Volgograd, Volgograd Univ. Press, 2008. 424 p. (in Russian).
- 6. Miklyukov V. M. Some conditions for the existence of the total differential. *Siberian Math. J.*, 2010, vol. 51, no. 4, pp. 639–647. DOI: 10.1007/s11202-010-0065-9.
- 7. Salimov R. R. ACL and differentiability of a generalization of quasi-conformal maps. *Izv. Math.*, 2008, vol. 72, no. 5, pp. 977–984. DOI: 10.1070/IM2008v072n05ABEH002425.
- 8. Prokhorova M. F. Problems of homeomorphism arising in the theory of grid generation. *Proc. Steklov Inst. Math. (Suppl.)*, 2008, vol. 261, suppl. 1, pp. S165–S182. DOI: 10.1134/S0081543808050155.
- 9. Boluchevskaya A. V. On the Quasiisometric Mapping Preserving Simplex Orientation. *Izv. Saratov Univ. (N. S.) Ser. Math. Mech. Inform.*, 2013, vol. 13, iss. 2, pp. 20–23 (in Russian).

- 10. Klyachin V. A., Chebanenko N. A. About linear preimages of continuous maps, that preserve orientation of triangles. *Science Journal of VolSU. Mathematics. Physics*, 2014, no. 3 (22), pp. 56–60 (in Russian). DOI: 10.15688/jvolsu1.2014.3.6.
- 11. Saks S. *Teoriya integrala* [Integral theory]. Moscow, Izd-vo. inostr. lit., 1949. 495 p. (in Russian).

Cite this article as:

Klyachin V. A., Chebanenko N. A. On the Geometric Structure of the Continuous Mappings Preserving the Orientation of Simplexes. *Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform.*, 2017, vol. 17, iss. 3, pp. 294–303 (in Russian). DOI: 10.18500/1816-9791-2017-17-3-294-303.