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We consider a family of continuously varying closed Jordan curves given by a polar equation, such that the
interiors of the curves form an increasing or decreasing chain of domains. Such chains can be described by
the Léwner — Kufarev differential equation. We deduce an integral representation of a driving function in the
equation. Using this representation we obtain an asymptotic formula, which establishes a connection between
conformal radii of bounded and unbounded components of the complement of the Jordan curve when the
bounded component is close to the unit disk.
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INTRODUCTION

We denote by D, = {z € C: |z| < r} the open disk of the radius » > 0 and centered
at the origin, D = ;. Let 2 be a simply connected domain which is a proper subset
of the complex plane and wy € . According to the Riemann mapping theorem there
are a unique number r > 0 and a unique function ¢g conformally mapping €2 onto the
disk D, and such that g(wy) = 0, ¢’(wy) = 1. This r is called a conformal radius of the
domain €2 with respect to the point wy. Let now € be a domain in the extended complex
plane with at least two boundary points and wy = oo € 2. There are a unique r > 0
and a unique function g, which is analytic in {2 except oo, where it has the expansion
g(w) = w+ ¢y + cqw™' + ..., and maps Q one-to-one onto {|z| > %}. This r is called
a conformal radius of the domain 2 with respect to co. In both cases we denote the
conformal radius of € with respect to the point wy by r(£2,wg). Note that if f maps
conformally the unit disk D onto Q C C and f(0) = wy, f(0) > 0, then r(Q,wy) = f/(0).

Let Qq, Qs be disjoint simply connected domains in the extended complex plane,
0 € Q, co € Qy. Then r(21,0)r(22,00) < 1, where the equality sign holds if and
only if €, and €2, are the bounded and unbounded components of the complement of
a circle with the center at the origin. This results in a corollary of the theorem about
nonoverlapping domains obtained by N. A. Lebedev using the area principle [1]. We will
consider the case when €2; and €, are the bounded and unbounded components of a
closed Jordan curve, respectively. Let f: D — Q; and F': {|z| > 1} — Qy be conformal
maps. The composition F~! o f determines a homeomorphism of the unit circle which
is called a conformal welding. We refer the reader to the works [2-7].

In the article, we use the Lowner — Kufarev parametric method to establish an asymp-
totic relation for conformal radii of two nonoverlapping domains. The Lowner equation
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is a differential equation describing a continuously increasing sequence of simply con-

nected domains of a special type, i.e. the so called slit domains [8]. Kufarev [9] and
Pommerenke [10] generalized the Léwner equation to a wider class of domains.

Given a chain of simply connected domains €Q(t), ¢t € [0,7"), such that 0 € Q(¢;) C

C Qts), 0 < t; < ty < T, the function f(z,t) = e’z + ..., conformally mapping D

onto €(¢) for each fixed ¢t € [0,T), a.e. satisfies the (Lowner — Kufarev) equation [9, 11]

0f(z,t) Z@f(z,t)

ot 0z

p(z,t), zeD, tel0,T), (1)

where, for all ¢ € [0,7), p(zt) is analytic in D with respect to z, p(0,t) = 1,
Rep(z,t) > 0 and p(z,t) is measurable with respect to ¢ for any z € D. A similar
statement can be formulated for a decreasing chain of domains.

We consider a chain of bounded domains €(¢), 0 € Q(¢), 2(0) = D with a bound-
ary I'(t) and a chain Q*(¢), co € Q*(t), of unbounded domains with the same bound-
ary I'(¢). The method of Lowner-Kufarev evolution can be used to establish a connection
between conformal radii of these domains. In [6], it is shown that if ©(¢) is decreasing,
p(-,t) € C*(D) for t € [0,7), p(z,-) is continuous in [0,T) for z € D and p(z,t), p'(2,t)
and p”(z,t) are bounded in D x [0,7), then In(r(£2*(0),00)) =t + o(t), t — +0.

We suppose now, that I'(¢) is given by the polar equation r = ~(¢,t). Let G(t),
0 € G(t) be a chain of domains bounded by a curve with the polar equation r = y~(¢, t).
Let f(z,t) = a(t)z + ... and g(z,t) = b(t)z + ... conformally map D onto Q(¢) and G(¢),
respectively, where a(t) = r(€2(¢),0), b(t) = r(G(¢),0) are positive, strictly monotone
and continuous functions, a(0) = b(0) = 1. We can always choose the parameter ¢ so
that a(t) = €' (a(t) = e™" in the case of a decreasing chain of domains). The following
theorem gives the asymptotic expansion for b(¢) in a neighbourhood of ¢ = 0.

Theorem 1. Let Q(t), t € [0,T), be a chain of domains (increasing or decreasing),
0 € Qt), 7(2t),0) = et Jor each t € [0,T), Q(0) = D, and the boundary T'(t) for
each t € [0,T) given by the polar equation r = (i, t), ¥ € [0,27|, where v € C3,
a € (0,1). Let G(t) be a chain of domains bounded by the family of curves with the
polar equation r = (1, t) = (y(¢,t))"L. Then

2w

logr(G(1),0) = Ft + % / (7(,0))* =4, 0)dp | £* +0(t?), t—+0.  (2)

0
By 4, 4 we denote the first and second derivatives with respect to the parameter ¢,
respectively. In general, we use the following convention. If f is a function of a real or
complex variable and ¢ is a parameter, then f denotes the derivative with respect to t,
while f” denotes the derivative with respect to another variable.
[t is not difficult to see that r(Q2*(¢),00) = r(G(t),0) for t € [0,T). So, we have the
following corollary of Theorem 1, which is the main result of the article.

Corollary 1. Let a chain of domains Q(t) and their boundaries I'(t) be the same as
in Theorem 1, and Q*(t) be a chain of the unbounded components of the complement
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of I'(t). Then
R s
log r(§2*(t), 00) = Ft + (% /(7(%0)) — (¢, 0) dso) t“+o(t”), t—+0. (3)

In Sect. 1 we deduce the integral representation for a driving function in the Léwner -
Kufarev equation. We use it in Sect. 2, where Theorem 1 is proved.

1. LOWNER - KUFAREV EQUATION

The following theorem gives the integral representation for the driving function p(z, t)
in the Lowner — Kufarev equation (1). Note that we do not suppose that f/(0,t) = e**,
as it is usually done.

Theorem 2. Let Q(t), t € [0,T) be a chain of domains (increasing or decreas-
ing), 0) =D, 0 € Qt), with a boundary 0Q(t) given by the polar equation
r=~(,t) =14(,t), ¥ € 0,27], where 6 € C**, a € (0,1). Let f(z,t) =a(t)z + ...
conformally map D onto Q(t), a(t) > 0. Then f is differentiable with respect to t for
t€|0,7), z € D, and satisfies the equation (1) where

e

e+ 2z
p(z,1) 27?/ Flew.D) (p,t),t) cos(B(w(p,t),t))— _ngp, (4)

with (i, t) = arg f(e'%,1) and B(i),t) = —arctan(Z24).
Remark 1. Note that 5(¢,¢) is an angle between a normal to the boundary 0Q(t) at
the point (1), t)e’ and a radius vector of this point.

Remark 2. Here, the function p(z,t) is analytic in D with respect to z, Rep(z,t) > 0
if Q(t) is increasing and Rep(z,t) < 0 if Q(¢) is decreasing, p(0,t) = £1 if a(t) = e*t.

Remark 3. Differentiating (1) with respect to z and putting z = 0, we obtain an
equation for the conformal radius r(€2(¢),0) = a(t)

D toga(t) =(0.6) = - / ‘ f, o (0,0, 1) cos(Bw i, 1), 1)

First, we prove the following lemma.

Lemma 1. Let Q; C Q be domains bounded by simple closed curves I, I'y given
by the polar equations r = v(¢), r =y (), ¥ € [0,27], 7,11 € C***, a € (0,1). Let f
and fy conformally map D onto Q) and )y, respectively, f(0) = f1(0) =0, f/(0) >0
£1(0) > 0. Let () = 7(4) — () satisfy [5()| < &, |5'(¥)] < &, [6"(e)| < e. Then

fi() =1 (( o / i >>cos5<w<so>>ji+jdso))+

+0(e zeD, g — 40, (5)

with () = arg f(e?) and B(Y) = — arctan(vl(%)).

Y
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We need the following theorem obtained by Siryk [12] (see also [13, p. 371]). It pro-
vides the asymptotic representation for functions conformally mapping D onto domains
close to D.

Theorem 3. [12] Let €2 be a domain that contains 0 and is bounded by a curve
given by the polar equation r =1 — §(v), 0 < ¢ < 27, where 1 is twice differentiable
and satisfies the conditions

b))l <e, 8@ <e [0"(W) <e.

Then a function f:D — Q, f(0) =0, f(0) > 0, mapping D conformally onto ) has
the asymptotic representation

1 2m
f(Z)Z<127T/5(w)

Proof of Lemma 1. We denote the inverse function by g = f~!. Since v € C3*+e,
f, £ f", f® can be continuously extended to D [14, p. 49] and f’ does not vanish
there [14, p. 48]. Hence ¢, ¢/, ¢”, ¢'® can be continuously extended to D.

The function g maps the curve I'; onto a simple closed curve in D, which has the
following equation

w
e.w—l—zdw) +0(g?), e — +0. (6)
ew —z

w(p) = g1 (1(9)e™ D) = g(f(e) = 5(1h(9))e™?),  0< < 2. (7)

We have

w(p) — e = g(f(e) = 8(¥(p))e™?) — g(f (")) =

) . 1 .
= —g'(f(e¥)3(¥(p))e? + O(e?) = —Wﬂw(@))ew") +0(e%) =
1 .
= —————08(¢(¢p)) e P PED) 1 O(e?), e — +0, (8)
o] (#)) (%)
where 3(1(p)) = arg f/;e(;l‘;w = — arctan %. Differentiating (7), we obtain

W(@) = g'(f(e*) — 6(x(p)) e N[ (e%)ie’ — o' (9)e (& (v()) + i6( ()],
W'(p) = g"(f(e) = 0(1h())e [ f'(€")ie? — ' (0)e™ (& (1()) + id(1h()))]*+
+g' (f(e%) = 5(1())eV ) [~ f"(e)e — f'(e')e™—

—" ()" (8 (()) +i6(1h())) — (&' ()%™ (8" (1 () + 206" (1(0)) — 6(¥()))].

Since, ¢”, g® can be continuously extended to D and |§(¥)| < e, |8'(¥)] < e,
10" ()| < € we obtain the following estimates

W () =g (f(e?)) + Oe)][f (e)ie’ + O(e)] = ie” + O(e), & — +0, (9)
W'() = [g"(F(e%)) + OIS (e)ie™ + O(e)* + [ (F(e')) + O(e)][— f" ()™~
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00 = |~ s + 00| U + 0@
N [f’(iw) N O(g)] [=1(e)e% = ['(e)e" + O(e)] =

(i ) 1" ( oip ) ) .
o f (6 )emgo f (6 >621‘P — e 4+ O(g) = —e"% + O(&‘), e — +0. (10)

T )
Dividing (9) by w(y) gives

9, ie? +0(e) |
9 ogw(p) 7 00 i+ 0(e), e — +0, (11)
therefore 5
—argw(p) =1+ 0(e), e — 40, (12)

O
Hence, the curve ¢(I';) can be given by a polar equation for £ small enough. Denote
() = argw(p) — ¢, 0 < ¢ < 27. Using (8) we obtain

() = arg g(f(e®) — if;b(w))eiw(w>) - (1 L 9U(e) — 5(igf))ew<¢)) _ eup) )
= ar — # e~ B(p) 2 .
& (1 |f/(€i¢)|5(¢(90)) +O(e )) , £ — 40,

Therefore, it is not difficult to see that u(p) = O(g?). From (12) we conclude that
(o) =0(e). Let r = 1 — A(p) be the polar equation of g(I'y). Then A(p) =1 —|w(p1)],
where ¢, is a unique solution of argw(p1) = . Hence u(p1)+¢1 = ¢ and p; = +0(&?).
Applying (8) gives

Alp) =1~ |wlpr)| =1 = |w(p +O(e*) = 1 — lw(p) + O(*)| =

= L[ 4 () — ) + O] = L[ = L (0(p)e ) 1 0(e) -
- fﬁii}))'ewwwm +O(eY)] =
= f;}fii)))l cos B(¥(p)) + O(e%), 0<p<2m, &— +0. (13)

From (13) it easily follows that |A(¢)| = O(e). Now we want to deduce similar esti-
mates for |A'(¢)], |A”(p)]. It follows from (8)-(10) that |w(¢)| = O(e), |w(p)|” = O(e).
Differentiating the equation A(p + u(p)) =1 — |w(p)| we obtain

Ao+ () (14 ' () = —lw(e)l,

A" (o + (@) (14 1 (0)) + A'(@ + p()) " (@) = —|w(e)]”

Hence |A(¢)] = O(e), |A"(p)| = O(e).
Thus, the curve g(I'y) has the polar equation r = 1 — A(y) where |A(p)| = O(e),
A" (¢)] = O(e), |A"(¢)] = O(e), € — +0. Therefore, we can apply Theorem 3 for
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h = go fi, h(0) = 0, K'(0) > 0, conformally mapping D onto the domain bounded
by ¢(I'1). Hence, (6) gives

h(z) = 2(1 — % / fjgj/(}iiﬁ cos ﬁ(zﬁ(@))zz j_L z dyp) + O(£?), z €D, e — +0.

Since f; = f o h, we obtain (5). O
Proof of Theorem 2. Let €)(¢) be an increasing chain. Fix ¢ € [0,T), h such
that t + h € [0,7). First, let h be negative, so Q(t + h) € Q(t). Denote A(¢,h) =

= (,t) — y(,t + h). Since v € C* we conclude that |[\(¢,h)] = O(h),
\(N(¢, h)| = O(h), |N'(¢,h)| = O(h). So we can apply Lemma 1. By (5), we obtain

flz,t+h)=Ff (z (1 — /s(cp,z,t))\(@/)(ap,t),h)dgp) ,t) +o(h) =

=f (z (1+h/s(gp,z,t)S(w(gp,t),t)dgo) ,t) + o(h),

1 1 e + 2
s(p, z,t) = 2 [Flen D) cos(B(Y(p,t),t))— :

e —z

where

Therefore,

21

f(zt+h) = f(zt) = f(z+ Zh/S(% 2,004 (0, 1), )dp, 1) — f(z,8) +o(h) =

0

= f/(,t)zh / S, 2, )5, 1), Do+ o(h), b — .

Let now h be positive. Then Q(t) € Q(t + h), and A(¢,h) = (¢, t + h) — (), 1)
satisfies all the conditions of Lemma 1. So we have

flz,t)=f (z (1 /s(gp,z,t+h))\(w(<,p,t+h),h)dgo) ,t—i—h) +o(h) =

=f (2 (1 h/s(go,z,t—i—h)5(1/1(gp,t+h),t)dg0) ,t+h> + o(h),

0

So we obtain

f(z,t+h)— f(z,t) = f(z,t + h)—

2w

—f(z—zh/s(gp, z,t+h)5(¢(g0,t+h),t)dgp,t+h)+0(h) =
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2w

_ flet4 h)zh/s(gp, b4 (o L+ h), ODdp+o(h),  h— 0,

0

Thus, we have shown that f is differentiable with respect to ¢ and satisfies (1). One
can similarly repeat the proof for a decreasing chain of domains. OJ

2. PROOF OF THEOREM 1

Let, for each t € [0,7), f(-,t) and g¢(-,t) conformally map D onto Q(t) and G(¢),
respectively, f(0,t) = ¢(0,t) =0, f'(0,t) > 0, ¢'(0,¢) > 0. Denote (¢, t) = v(¢,t) — 1,
01(¢,t) = y1(¢,t)—1. By Theorem 2 and Remark 3, conformal radii satisfy the equations

Clogr(@(1),0) = p(0.1), T logr(G(1),0) = 4(0.1). (14)
where p(z,t), q(z,t) are given by
0 / o 1).1) cos(B(W (. 1), ) o d (15)
Z 27T |f 6’“}0 t 7 Y COs (107 Y 67’80 (107
( t>—i/¥ i), eos(Br(un(. ). 0) S dp, (16
q\z,t) = o ‘gl<€i<p,t)| 1(P1(p,; 1), 1) CoS{Pr(P1(p, t), el — s
0
with ¥(p,t) = argf(e¥,1), B(iht) = —arctan(Z20), yn(p,t) = argg(e™,t),
Gi(,t) = — arctan(mz:g). First, we want to prove the following equalities
1 21 zgo
pe0) = a0 = 5 [He.05 2 dp. zeD, (17)
2m -z
0
2
dq(z,0)  9Ip(z,0) 1 : 9 e + z
o = T L G0 -0 S de D (9)
0
Elementary calculations lead us to the formulas
01(2,0) = —0(¢,0), (19)
Since f'(e*?,0) =1, ¥(p,0) = ¢, B(1,0) = 0, representation (15) gives
2m
1 /- e+ z
= — , D.
pe0) = 5 [He 05T s
0
Similarly we obtain
2
1 : e + z
050) =5 [Hie0 2 dp 2D

0

Thus, (19) gives (17).
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Denote by P(t) the expression under the integral in (15). Elementary calculations
yield the following result

0(p, 0) + &' (0,00 (10,0) + 0(10, 0). (22)

t=0

P(0) = — o (1£(e% 1))

Similarly, we denote by Q(t) the expression under the integral in (16) and obtain

t=0

Q) = (I (e 1))

It easily follows from (1) that ¥ (p,0) = Im p(e%?,0), ¢1 (¢, 0) = Im (e, 0). Therefore,
(17) gives

*f(z,t)
0z0t

Differentiating (1) with respect to z and putting £ = 0 we conclude that
= p(z,0) + zp/(2,0). Hence

t=0

f1e.0) = (.0 = ple®.0) + ) (,0)
ot 0

Since

F(e%,t) = f'(e,0) + f'(e",0)t + ot), t — 40,
we see that

|f'(€%,1)] = | + f'(e",0)t| + o(t) =
=1+ [f'(e*,0)| cos(arg(f'(e",0)) — @)t + o(t), t — 0.

Thus,

%|f’(ew,t)| = |f’(ew,0)| cos(arg(f’(ew,O)) — ), 0<p<2m. (25)
=0

From (25) and (17) we deduce

0 , 0 A

o (¥ N Y S 1

g 0l == G
Formulas (19)-(24) and (26) show that Q(O) — P(O) = —25(w,0) —|—2(5(¢,O))2, which

leads to (18). One can deduce (2) from (14) and (17), (18). Indeed, let, for example, 2(¢)

be an increasing chain of domains. Using (14) and (17) we obtain

7 0< o< 2m. (26)
t=0

L logr(G(1),0)] = 4(0,0) = —p(0,0) = 1,

dt 0
Similarly, using (18) we obtain
2
L rogrc.0| = Lyo.n —3/(5( 0))2 — §(p,0) d
dt2 g ) o - dtq ) o - T 907 907 90

0
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B cTaThe paccMaTpuBaeTCsi CeMeicTBO 3aMKHYTHIX XOPAaHOBbIX KPUBIX, 3aAaHHbIX B MOMSIPHON CiCTEME
KOOP/MHAT 1 HenpepbIBHO 3aBUCSILLNX OT NapaMeTpa, 1 Takoe, YTo 061acTy, OrpaHNyeHHbIe STUMU KPUBLIMY,
o6paaytoT BospacTaroLee uin yobiarluee cemeiicTso. Takoe CeMeiicTBO 0bnacTteil onuckIBaeTcs Andoae-
peHUManbHbIM ypaBHeHeM NleBHepa — Kydpapesa. L1t paccMOTPEHHOO Cyyasi Mony4eHo UHTErpasbHoe
npe.CcTaBneHre Ans ynpasnsioliiei oyHKLMN B 3TOM ypaBHEHUN. Mcnonbayst 1o npeicTaBneHue, noayyeHo
ACMMNTOTYECKOE COOTHOLLIEHIE, CBSI3bIBAIOLLEE KOHIDOPMHBIE PaIYChi OrPAHINYEHHOI 1 HEOTPaHNYEHHOI
KOMMOHEHTbI JOMOMHEHIS K XXOP1aHOBO KPUBOA, KOT [1a OrpaHn4eHHast KOMMOHeHTa 6n13ka K eyuHInYHOMY
Kpyry.

Kntodesbie cnosa: ypaBHeHue JleBHepa — Kycpapesa, KOH(POPMHBIA paanyc, aCUMMTOTUYECKOE pasnoxe-
Hie, HeHaneratowme obnactu.

Baaropapaoctu. Padora BhinosHeHa Npu (PMHAHCOBOH nonaepxxke Poccuiickoro HayyHoro ¢poH-
na (mpoekt Ne 17-11-01229).
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