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is considered. An asymptotic procedure for analysing the lowest cutoffs is developed. A polynomial frequency
equation is derived, along with the linear equations for the associated eigenforms corresponding to displace-
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eigenfrequencies and eigenforms are compared with those obtained from the exact solution of the original
problem for thickness resonances.
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INTRODUCTION

The classical theory for thin homogeneous elastic structures governing bending,
extensional and torsional-shear vibration modes, e.g. see [1-3], is asymptotically con-
sistent over the low-frequency range. Obviously, it does not take into consideration any
of high-frequency modes with the cut-off frequencies related to thickness resonances.
At the same time, currently available refined formulations incorporating the lowest
high-frequency modes ( [4,5] and reference therein) do not appear to be uniformly
asymptotically valid, as noted for example in [6]. These observations are also true for
layered structures not demonstrating a substantial contrast in material and geometric
properties of the layers, e.g. [7]. However, multi-parametric analysis of strongly vertical
inhomogeneous three-layered plates in [6], see also [8] and [9], indicates that for cer-
tain combination of problem parameters the lowest thickness shear resonance frequency
becomes asymptotically small, resulting in an extra low-ifrequency vibration mode in
comparison with the traditional layout. Four scenarios studied in [6] correspond to the
practically important setups of sandwich structures, laminated glass, photovoltaic panels
and precipitator plates utilised in gas filters, see [10-13].

In this paper we extend the framework of the cited publication [6] on thin strongly
inhomogeneous plates to multi-layered structures with arbitrary number of layers. For
the sake of definiteness, the upper and lower faces are supposed to be clamped. For
homogeneous plates, such boundary conditions do not support low-frequency vibrations
[14,15]. Below we consider layers of two different types, namely, “strong” and “weak”
ones, adapting the ratio of their stiffnesses and densities as a single small parameter,
such that the wave speeds in strong and weak components are of the same order. In
addition, we do not impose any special restriction on the thicknesses of the layers,
apart from the assumption that all of them are also of the same asymptotic order. The
consideration is restricted to the evaluation of thickness resonances.

The paper is organised as follows. The problem is formulated in Section 1. The general
asymptotic procedure is developed in Section 2. A polynomial equation is derived for the
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leading order values of the thickness resonances along with linear algebraic equations
for the associated eigenforms. As might be expected, the order of the aforementioned
equation coincides with the number of strong layers undergoing almost rigid body mo-
tion [9]. In this case the weaker layers are subject to nearly homogeneous thickness
deformation. The results of Section 2 are specified in the next Section 3 for a five-layered
laminate. A correction to the leading order approximation is also calculated, in order
to illustrate small deviations from rigid body motions and homogeneous deformations.
Numerical results are discussed in the last section.

1. STATEMENT OF THE PROBLEM

Consider a thin elastic laminate composed of n alternating strong and weak layers of
thickness h;, i = 1,...,n, see Fig. 1. Denote Young moduli, Poisson ratios and densities
of the layers by FE,,, v, and p, with m = 1 and m = 2 corresponding to weak and
strong layers, respectively. Thus, F; < F, and also, for the sake of definiteness, we

assume that E/FEy ~ p1/ps.
The consideration below is oriented to
harmonic vibrations with angular frequency
n, w of alaminate with fixed faces over the low

.Z."—' frequency range
s
hy 1 B, .
hy w<<h_i p—m, Z:L...,n, m:1,2
(1)
The main focus is on the effect of elas-
tic contrast, since low frequency vibrations
is not a feature of homogeneous structures
with fixed faces, see [14]. We restrict our-
selves to the evaluation of the cutoffs of low-
Fig. 1. Multi-layered laminate with n frequency modes arising near the thickness
alternating weak and strong layers resonances of a flat plate clamped along the

faces of weak outer layers.
We start from the equations [2]

Em d2’03i
2(1 + v )5t d2?

+ pw?vg; =0, 1=1,..,n, m=1,2,

where

and

‘ 2
m izo, k:1,27
21+ 1) A2 + PmW Vg

for stretch and shear thickness vibrations, respectively, with v; and vs; denoting tangen-
tial and transverse displacements. The continuity conditions along interfaces are written
as

E1 dU3i . E2 dl)gj
2014+ 1) dz 2(1 + )5 dz '

U3; = U3y,
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or

Vki = Vkj, k= ]-7 27
E1 d’UM Eg dUkj

2(1+1) dz 2(14wyp) dz’

where j =i+ 1 for a “weak-strong” interface and j =i — 1 for a “strong-weak” one. In
addition, along fixed faces z =0 and z = hy + ho + ... + hy,

vklzvglzvkn:vg,nzo, ]{221,2

The equations above can be re-written in the form

Dm@ + pmw u; = 0, (2)
with
U; = Uy,
du; du; (3)
D — = D,—2
"d >d
and
Uy = Up = (4)
En,
at z=0and z = hy + hy + ... + h,,, Where u; = v3; and D,, = ——— for stretch
2(1 4 vp) #m
E;
vibrations and u; = v; and D,, = ————— for shear vibrations.

The formulated boundary value problem can be treated asymptotically over low-
frequency range (1), due to the contrast properties of the layers.

2. ASYMPTOTIC PROCEDURE
First, re-write the equations in the previous section in dimensionless local coordinates
Z; = z/h; and frequencies Q; = wh;/c,, with ¢, = \/Du/pm, 1 =1,2,...,n and m = 1,2,
having
dzui
dz?
The frequency parameters corresponding to both weak or strong i-th and j-th layers
are related to each other as

- (5)

Q; = LiQ, (6)
where L} = h;/h;. At the same time, for i-th weak layer and j-th strong one
Q, = ch-Qj, (7)
where ¢ = ¢y /c;. Boundary conditions (4) become
U1|21:0 = un|zn:bn+1 =0, (8)
where

i—1
1 .
b1 =0 and bz: h_inEZOhTH 122,...,71,
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Continuity conditions (3) along interfaces take the form

ui|Zi:bi+1 = ui+1|Zz’+1:bi+l (9)
and 1 1
Us; ; Uit
= L, L , (10)
dZZ ZiZbi+1 ’ dZZ+1 Zi+1:bi+1
where p = 1 if i-th layer is strong, and p = —1 il it is weak. Here small parameter ¢ is
introduced as the ratio
D
€= — :
D,
As it has been already mentioned, we also assume that p;/ps ~ €. In this case we have
02~ Q2 ~ ...~ Q2 ~ ¢ over low frequency range (1). Similarly to [9], we expand

frequencies €2; and displacements u; in the asymptotic series
Q= (U +eQ5 +...)

and
U; = Uijp + EU1 + . ..
At leading order, we have from equation (5) for strong layers
d2ui0

122

=0, (11)

subject to the Neumann boundary conditions

duio
dZz;

du,-o

= =0.
Z;=b; dZ;

Zi=b;+1

As a result, we arrive at uniform variation across the thickness
ujp = Cj o = const, (12)

corresponding to rigid body motion.
Next, we proceed with equations (11) for weak layers. For inner weak layers we have

Wiol z,=p, = Ci71,07 Wiol z,=p;+1 — Cz’+1,0,

while for outer ones
“10|leo = “n0|Zn:bn+1 = 0.

Thus, we obtain for eigenforms

U0 = 02,0217
wio = Ci—10 + (Ciz10 — Ciz10) (Z; — b)), (13)

Uno = C'nfl,O (bn +1- Zn) .
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P

At next order, we start again with the equations for strong layers following from ().

They are
d?u;
The associated boundary conditions, derived from (10) and (12), become
dui i
dZ‘l - Li—l(ci,() - Ci—z,o),
b (15)
duﬂ i
47 - = L¢+1(Ci+2,0 - Ci,O)-
v 1Z;=bi+

The compatibility of equations (14) and boundary conditions (15) results in the rela-

tions

C(2,0 Q%O = L%OZO - Lg (04,0 - C(2,0) )

Oi,O Q?o = LZ:_I (Ci,O - Ci—2,0> - Lé—l—l (C'H-Q,O - Oi,O) )

Ch-1p 92_1 0= Lz_lcn—l,o + LZ:% (Cr=1,0 — Cr3y0) -

(16)

The latter together with formulae €,y = L;Qjo, see (6), can be used to deter-
mine unknown constants C;, and, therefore, leading order eigenirequencies as will be
demonstrated below for a five-layered laminate. In addition, next order corrections to

eigenfrequencies and eigenforms will be derived.

3. FIVE-LAYERED LAMINATE

Consider a five-layered laminate — oz
with alternating weak and strong lay- hs
hy
ers clamped along the faces of outer )
weak layers, see Fig. 2. 3
First, we have from (16) for two hy
strong components hy
Copn Q39 = L3Cy0 — L3 (Cyo — Cayp), Fig. 2. Five-layered laminate with clamped faces
Cio QZO — L§O40 + [/31 (Cyo — Cap), composed of two strong and three weak layers
with Q49 = L3 Q9. These equations yield
0y = (L2)" (L3 + Ly — k). (17)
together with the relation
Cao =k Cip, (18)

with parameter k defined as

—b+ /b2 +4L4 (1Y)
2L ’

k1o =

MexaHnka

b= LiLy+ LyLs — Ly — Ls.
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Then, we obtain from (13) and (18) for leading order eigenforms

uig = CuokZy, ugg = Cuok, ugo = Cypo (k+ (1 — k) (Z5 — b3)),

19
ug9 = Cay, uso = Cao (1 +b5 — Z5) . (19)

Next, we have from boundary value problem (14)—(15) for the first order correction
to strong layer displacements

wy = A1 Z; + Bi1Zi + Gy, 1= 2,4, (20)
where
1
Ay = —504,0145 Q30 By, = C'AL,OIC(L% + 95052)7
1
Asy = —5C10%, (£3)?, Buy = Cuo(2 (L3 (s +1) — LY).

For weak layers the first order correction is determined from equations (14) subject
to the boundary conditions
u11]z,—g = 0, uit]z, oy = U2l y,
U31|23:b3 - u21‘Z2:b2+17 u31‘Z3:b3+1 = u41|Z4:b47
u51|Z5:b5 = u41‘Z4:b4+17 u51‘Z5:b5+1 = 0

As a result, we arrive at

uy = FinZ) + Gin Z; + HinZi + Ky, 1=1,3,5, (21)
where
Fii= —%04,0930 (L3)* &k, Gi1 =0,
Fyq = %04,0930 (L3 Ak —1), Gy = 504,0930 (£3)* & (bs(1 — k) — k),
Fi = £Cio% (13) ¢, Go = 5 Cao (L3)° (b + 1),

Then, setting one of the constants equal to zero, namely C,; = 0, and applying
Dirichlet boundary conditions for weak layers we obtain for the rest of the constants

Hy, = A2,1b§ + Byiby — Fi1 + Oy,
Hsq = Ay1bi + Baabs — As1(by +1)* — Byy(by + 1) — Fy (305 + 3bs + 1) —
—G31(2b3 + 1) — Cyyq,
Hsp = —Ay1(ba+1)°> — Byi(bs+ 1) — Fsq (302 + 305 + 1) — Gs5,1(2b5 + 1)

and

Kl,l - 0, Kg’l — A471b[21 + B471b4 - F3’1<b3 + 1)3 - G371(b3 + 1)2 - H371(b3 + 1),
Ksi1=—F51(bs + 1) — Gs1(bs + 1)* — Hs1(bs + 1),

where Cy; is still unknown.
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Now, we consider vibrations of strong layers at second order, starting from the
equations

dQUiQ

122

+ Q?O'Ltﬂ + Q?luio = O, 1= 2, 4, (22)

subject to the boundary conditions

duo 1 du;_11
AdZi |,y TN dZia|,
Z’L—bz 1 szl—bzfl'i‘]- (23)
dugo 1 duii1
le Z;=b;+1 T dZH‘l Zit1=bit1
The compatibility condition for the last boundary value problem leads to
1
0 = (245, — 30305 + BL3b + SL3Y; — 36,023, + 3L + 6L3by — 03)—
—6A;  L3by + 3B5 (— 20285 + 2LTby + 2L3by — Q3 + 2L3) — 6B} L3bs+
60y, (= 9B + L3 + L) + 12F1, L3 + 6F5, L3(30s + ) +6G5, L3),  (24)
where
. Ca 1 1
0271 pu— pu—

—_— = —— X
Cio  GLALS + LALL + Lik — (L3)* 02,
x <2A’571 <3L;*L;*b§ + 3LALAE — 36302, (L3)” — 30,02, (L4)” + 6 L3LAb,—

— 2 (L4)” + L%k + BLALL + GLibok + 3L§k;) +245, (Sbimgo (L4)" +
1304k Q2 (L3)? — BLALAD? + k02, (L3)” — 3L402k — 3LAD2k — 6Libsk — 3L§k> —~
—3B;, (252930 (L3)? + 204 L3by + 6LALAD, — 2, (L3) + 2L4L4 + 2L3bok + 2L§k>+
+3Bj, (ngo (L8)® + 204k (L3)* — 2L4L4bs — 2034k — 2L2b4k — ngk) +
H12FF LALA 4 6FF, (3L§L§b3 ALY — 3LAbsk — 2L§k> — 67, (3L§55k + Lgk) +
+663, (LALS — Lik) — 6G§71L§k)
and all the constants with x are obtained from their counterparts through division

by 04,0.

4. NUMERICAL RESULTS

Consider a five-layered laminate studied in the previous section with the layers of
same thickness h, i.e. h; = h, i = 1,2,...,5. Then, we have from (17) and (24) for

eigenfrequencies, and from (19), (20), and (21) for eigenform at £k = 1 and k = —1,
respectively

ngs(l—%(5c2+2)+...), (25)
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with
Uy :Zl+%Z1 (~222++24) + ...,

wy =145 (<23 +42+5) + ...,

u3:1+%(—02Z§+5C2Zg—602—|—9)+..., (26)

u4:1—%Z4(Z4—6)+...,

us = —Zs + 5+ % (P23 — 15222 — 2475 + TAZsc® — 120¢* + 120) + . .
and

Q§:g<3—%(3c2+2)+...>, (27)

with

w =2+ 5% (2 == 40) + ...

u2:—1+%(3Z22—8Z2—35)+...,

g = 225 = 54 = (2623 + 156 23 — 37 2y + 825 +30c = 195) +...,  (28)

u4:1—%Z4(3Z4—22)~|—...,
us = — 5+ 5+ % (P23 — 156222 + TAZsc* — 4075 — 120¢> + 200) + . ..

The eigenfrequencies, calculated from one-term and two-term asymptotic formulae,
see (25) and (27), versus their exact values, for which det M = 0 in (30), are presented
in the Table. Here and below ¢ = 0.01 and ¢ = 1.

Comparison of exact and approximate eigenfrequencies

k| Q3=e03 | Q3 =¢e(Q3 +0Q3%) | exact value Q3
1 0.01 0.009883 0.009884
—1 0.03 0.02975 0.02975

Fig. 3 demonstrates a good agreement between two-term expansions (26) and (28)
and exact solution (29) for both £ = £1. In this figure the exact eigenforms are nor-
malized by constant Usy (Usy = Cy), see Appendix.

u/C4,() u/C4,o
1 4
1 T ————— A\
0.8 0.5
0.6 0 ‘
1 2
0.4 \\
-0.51 \ ]
0.2 \ j
0 i i ‘ ‘ \ ~11 \\___J
1 2 3 4 zh ] N
a b

Fig. 3. Asymptotic expansions (26), k = 1 (a) and (28), k = —1 (b) of the eigenforms of
a regular five-layered laminate at ¢ = 0 (dashed line) and ¢ = 0.01, ¢ = 1 (dotted line)
together with exact solution (29) (solid line)
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5. CONCLUDING REMARKS

The developed methodology seems to be the initial stage in analysing low-frequency
vibrations of strongly inhomogeneous multi-layered structures. The next step, following
the evaluation of low-frequency thickness resonances, is concerned with the derivation
of multi-mode polynomial approximations of the original dispersion relations, similarly
to [6]. The final expected outcome should involve two-dimensional equations of motion
supplied with appropriate boundary conditions at the edges. The proposed approach
may be easily extended to layered anisotropic and pre-stressed structures, previously
investigated only for homogeneous and non-contrast configurations, e.g. see [16-18].
Certainly, various generalisations dealing with another scaling for problem parameters
are also possible.
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the Slovenian Research Agency and also by Program OP20.00362 EVA4GREEN.
L. A. Prikazchikova acknowledges support by the Faculty Award by Keele Universi-
ty, UK.

APPENDIX

The solution of equations (5) for a five-component laminate can be written as
u; = U;1 sin (QZZZ) + Uj;o cos (QzZz) , 1=1,...,5, (29)

where U;; and Ujy are constants. On substituting (29) into continuity conditions (9), (10) and
boundary conditions (8), we arrive at the eigenvalue problem

M-U =0, (30)

where U = (U11, Uia, Usi, Usa, Usi, Use, Uy, Usa, Usi, U52)T, is an eigenvector and M is a
10 x 10 matrix with non-zero components given by

Mis =1, My =sin(Qy), Mo =cos(Q1), Moz = —sin(Qabe), May = — cos(Qabs),
Mszs =sin(Qa(b2 + 1)), Mzg = cos(Qa(b2+ 1)), Mszs = —sin(Q3bs), Mss = — cos(Q3b3),
Mys = sin(Q3(bs + 1)), Myg = cos(Q3(bs + 1)), My = —sin(Qqby), Mys = — cos(Q4by),
Ms7 = sin(Qq(bg + 1)), Msg =cos(Qq(bg + 1)), Msg = —sin(Qsb5), Ms190 = — cos(Qs5b5),

Meg = sin(Q5(bs + 1)), Me10 = cos(€25(bs + 1)),
M7 = Qicos(Q)e, M= —Qisin(Q)e, Mz = —L% cos(Qob2)Qo, M7y = L% sin(2b2)Qe,
Mgz = Qg cos(Qa(bg + 1)), Mgy = —Qasin(Qa(bg + 1)), Mgz = —L3 cos(Q3b3)Q3¢,
Mgg = L2sin(Q3b3)Q3e, Moz = Q3 cos(Q3(bs +1))e, Mg — Q35in(Q3(b3 + 1))e,
Mgy = —L3 cos(Qubs)Qq,  Mog = L sin(Qubg)Qy,  Mig7 = Q4 cos(Qu(by + 1)),
Mygs = —Qusin(Qq(bg + 1)), Migg = —Lg cos(Q505)se, Mg 10LZ5l sin(Q5b5)s¢.
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INTMHHOBOJ/IHOBLIE MOAbl KONEBAHWUWN CUTbHO HEOQHOPOHbIX
YNPYTrnX CNOUCTbIX KOHCTPYKLMN

10. A. KannyHos, /1. A. lpnka3unkosa

KannyHos tOnuii JaBunoosuy, JOKTOP (PU3NKO-MATeEMATUMHECKuX Hayk, npodpeccop, LWkona komnbiotep-
HbIX HayK M matematiku, YHusepcuteT r. Kunb, Kunb, Ctagpcpopawmp, ST5 5BG, BenukobputaHus,
j-kaplunov@keele.ac.uk

Mpukasunkosa Jliogmuna AHaToNbeBHA, KaHAMAAT (OM3NKO-Matematndeckux Hayk, Lkona komnbiotep-
HbIX Hayk 1 matematuki, YHusepcutet r. Kunb, Kunb, Ctacpcpopawmp, ST5 5BG, BennkobputaHusi,
|.prikazchikova @keele.ac.uk

B cratbe n3yyaetcss AMHaMMKA TOHKUX MHOFOCTIOMHBIX KOHCTPYKLMIA C KOHTPACTHBIMI «MSTKUMU» I
«KECTKUMU» CnosiMin. PaspaboTaHa acuMnToTM4eckas npolielypa s aHanmaa Manbix 4actot cpeaa. Mony-
YEHO NOMHOMMANBHOE YacTOTHOE YPaBHEHNE, a TAKXe NIMHEHbIE YpaBHEHUS! s COBCTBEHHbIX (OpM TON-
WWHHBIX KonebaHui. B cnyyae naTiCnoinHoii NacTUHbI ¢ 3aKaTbiM1 NIMLIEBLIMIA NOBEPXHOCTAMM BbiBEAEHb
[BYX4NeHHble aCUMMTOTUYECKIE Pa3NIoXeHNs ANt COBCTBEHHBIX YacTOT 1 (POPM, KOTOPbIE COMOCTABNSIHOTCS
C TOYHBIM PELLIEHNEM UCXOAHOM 3aAa4K O CBOOOIHBIX TOMMUMHHBIX KONEBAHMSIX.
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