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There are several approaches to the problem of construction of an orthogonal MRA on Vilenkin groups, but
all of them are reduced to the search of the so-called scaling function. In 2005 Yu. Farkov used the so-called
“blocked sets” in order to find all possible band-limited scaling functions with compact support for each set
of certain parameters and his conditions are necessary and sufficient. S. F. Lukomskii, lu. S. Kruss and
G. S. Berdnikov presented another approach in 2014-2015 which has some advantages over the previous
ones and employs the notion from discrete mathematics to achieve the same goals. This approach gives an
algorithm for construction of band-limited orthogonal scaling functions with compact support in a concrete
fashion using some class of directed graphs, which, in turn, is obtained from the so-called N-valid trees
introduced by the same authors in 2012. Up to this point, though, it was not known whether this algorithm is
good enough to produce any possible orthogonal scaling function of such a class. This paper describes the
aforementioned algorithm and proves that it can be viewed as a necessary and sufficient condition itself, i. e. it
produces any possible orthogonal scaling function. Additionally, we get another, more convenient description
of the class of directed graphs we are interested in.
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INTRODUCTION

Consider (G, +) — locally compact Vilenkin group with sequences infinite in both
directions as its elements:

r="(..,001,2n, Tps1,...), z;=0,p—1,

where p is an arbitrary prime number; ¢, = (...,0,-1,1,,0,41,...) are basic
elements in G. Addition + is defined as coordinate wise addition modulus p, i.e.
r+y = (z;+y;) = (x; + y;modp). Let

Gpo={reG: 2=(..,001,2n, Tpp1,...)}, NEZL

be a basic sequence of subgroups, G- — sequence of ahnihilators, X — character group,
rn € Gy \ Gy — Rademacher functions on group G. Dilation operator & in group
G is defined by the equation @z := 3.7 a,g, 1, where v = 3.7 a,g, € G; in

character group it is defined by the equation (y.</,x) = (x, &/x). Let us define sets

H(()s) ={heG:h=a 19 1+a 29 o+...Fa_s9_s}, seN,
Hy={reG: r=a_19 1+a 29 o+...+a_sg9_s, s € N}

Set H, is the set of shifts in G. It is an analogue of the nonnegative integers set.
V. Protasov, Yu. Farkov in [1-3] characterized all diadic wavelets on R, and
developed an algorithm for their construction. Yu. Farkov in [4, 5] researched scaling
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functions ¢(z) with compact support on G_y and developed necessary and sufficient
conditions on mask mq(x), which generates an orthogonal MRA. These conditions hold
with additional assumption

p—1
Z Imo(GENr Y ri g =1,

ap=0

which is necessary for orthogonality of the system of shiits of the corresponding scaling
function . Yu. Farkov proved that in this case scaling function ¢ generates orthogonal
MRA iff mask m does not have the so-called “blocked” sets. The problem of finding such
sets requires exhaustive search of approximately 27" different cases, which is possible
only with p and N being rather small.

Thus, the necessity of finding another algorithm arose, the algorithm which does not
require exhaustive search. This necessity triggered the appearance of another approach,
which employs various graphs as the means to construct orthogonal MRA. In [6,7]
another algorithm for construction of ¢ was developed. It doesn’t require exhaustive
search, but it is valid only for functions |$(x)| constant on cosets G*, and taking 2 values
only: O or 1. Initially, trees appeared in [8,9], where they were used for construction
of Riesz MRA. In [10] authors managed to get rid of restriction supp p(z) C G_;. To
achieve this, the notion of N-valid tree was introduced. It was proved that step function
@(x) with support supp ¢(z) C G_y and restriction |(x)| = 0 or 1 generates orthogonal
MRA if ¢(x) is constructed by the means of some N-valid tree using the algorithm
presented in the same paper.

In [11] another restriction was omitted. The results of this paper no longer require
&(x) to satisfy “|@(x)] = 0 or 1”. The algorithm for construction of orthogonal scaling
function now has the only restriction: ¢(x) is a band limited function with compact
support. This algorithm does not require exhaustive search. The problem of constructing
such function is reduced to constructing some digraph, which, in turn, is constructed
using arbitrary N-valid tree.

However, until current article it was not known whether the aforementioned
algorithm is able to construct any possible function ¢ of the described class or not. The
research presented here answers this question with definite “yes”. Thus, the algorithm in
question can actually be viewed as a necessary and sufficient condition for ¢ to generate
an orthogonal MRA on Vilenkin group. As a pleasant complement we incidentally get
another, more convenient description of a certain class ol digraphs while proving this
fact.

The structure of the paper is the following. In Section 1 we describe the algorithm
from the paper [11]. In Section 2 we find a necessary condition for scaling function ¢
using the notion of digraphs, and then we prove that this necessary condition is just a
rephrased sufficient one we have in the form of the algorithm, which, in turn, proves
that the algorithm is a necessary and sufficient condition.

1. CONSTRUCTION OF A SCALING FUNCTION

Let us introduce the algorithm for construction of scaling function with the
use of digraphs. Denote the collection of step functions constant on cosets of Gy,
with support supp(¢) C G_y as Dy (G_y), M,N € N. Similarly, ®_x(G7;) is a
collection of step functions constant on cosets of G+, with support supp(¢) C Gy;. If
v € D(G_y) generates an orthogonal MRA, then it satisfies the refinement equation
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o(x) = Zh€H<N+1> Bro(e/x—h) which can also be written in frequency form (see [7])

@(x) = mo(x)p(xo 1), (1)
where
mo) == Y A L) )
heH{N Y

is a mask of equation (1).

In [7] the following statements were proved.

1. If ¢(x) € D_n(G3y) is a solution of refinement equation (1) and the system of
shifts (¢(z—h))nemn, is orthonormal, then ¢ generates an orthogonal MRA.

2. 11 ¢(x) € D_n(G4;), then the system of shifts (¢(z—h))nen, is orthonormal iff for

all oy, a ny1,. a0 =(0,p—1)

S RGE rE =1 3)

aQ,a1,...,ap—1=0

Thus, in order to construct orthogonal MRA one needs to construct a function
¢(x) € D_n(G7;), which is a solution of refinement equation (1) and which satisfies
conditions (3).

Definition 1. Let NV be a natural number, p — a prime number. Then N-valid tree is
a tree with vertices a; = 0,p — 1 directed from leaves to root and having the following
properties:

1) the root and all vertices up to (IV — 1)-th level are equal to zero;

2) any path (ax — agy1 — -+ — agyen—1) of length N —1 is unique in the tree. Here
oy = 0,p — 1.

Let us choose an arbitrary /N-valid tree 7" and construct a scaling function using it.

Algorithm 1. From the tree T we construct a new tree 7' in a following way.

1. Replace the path of NV zeros ending with root with one vertex (On,0n_1,...,01).
All vertices of (N + 1)-th level of T" are now connected to this vertex in 7. It becomes
the root of 7.

2. Then we change the values of each vertex without changing the arcs. If in the
tree T we had a path

AN — QN—1 — T g

starting from the vertex ay, then in the new tree T this vertex has a value equal to
N-dimensional vector (ay,ay_1,...,aq). )
Because of N-validity of the tree T each possible vector appears in T one

time exactly. Also, if we denote height(T) = H, height(I') = H, then, obviously,
H=H-N+1.

Remark. We refer to the tree T as an expanded N-valid tree. Tree T, in turn, is

called shortened N-valid tree. It is easy to switch from one representation to another if
needed, and they describe the same structure as it becomes apparent later in this paper.
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Algorithm 2. Now we use 7" to construct digraph T'.

Each vertex @y = (ay,an_1,...,a1) of T we can connect to any number of lower
level vertices (an_1,..., a1, qp), i.e. first (N —1) elements of this vertex are equal to last
(N — 1) elements of vertex @y. We call this condition suffix-prefix property. Vertices
that @y is connected to, we denote as (ay_1,...,a1,00). Le. ag € {ap} iff the vertex
ay is connected to (ay_1,...,a5,ap) in T

Algorithm 3.

1. Denote

)\Oé—Nyoé—N-&-l»-uyOé—l,OéO = |m0(GJ—_Nr ;VNTQNA—/:ll o rallr(()m”z'
If a vertex (a_y,@_ny1,...,_1) in digraph T' is connected to vertices
(@-Ny1,Q-Nt2, .., a1, Gp)

then we define the values of the mask for the condition

ZAQ,N,Q,N+1,...,Q,1,&O =1 and Aa,N,a,J\Hl,...,a,l,ao =0 for all (&) ¢ {650} (4)
a0
to hold. Also, define mo(G+y) = 1, which implies oo
2. Using equation (1), one can recover ¢ from the mask we have already generated.
Then the scaling function ¢ itself can be found after the application of inverse Fourier
transform.
The main result of paper [11] is the following.

Theorem 1. Given arbitrary N-valid tree T, let the tree T and graph T be
constructed based on T and values of the mask my(x) defined with the help of
equation (4). Let H = height(T). Then the equation

5(0) = [ [ molx# ™) € D _n(Giy)

defines an orthogonal scaling function p(z) € D (G_y), where M = H — N.

This theorem supplied with aforementioned algorithms describes the process of
constructing step scaling functions with compact support on Vilenkin groups. This
process always results in an appropriate scaling function, i.e. it can be viewed as
a sufficient condition. But can we acquire any possible scaling function with these
properties? To answer this question some additional operations should be introduced.

2. THE NECESSARY CONDITION AND CRITERIA

Let us describe an algorithm inverse to Algorithm 3. Algorithm 3 describes
construction of ¢ given digraph I', a new algorithm describes a process of construction
of a digraph I" given ¢(x) € D_n(B7,).

Algorithm 4.

1. Let vertices of our digraph T' be in the form @ = (a?)¥,. Denote {a’} — the set
of all vertices.

2. Let ¢y rt WV rd o org0 . roy) # 0, where s < M. Using

= [T motxe™)
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periodicity of the mask and notation

1 QAN _ O_N+1 ap\
(6 NT_NT —N+1 Ty )_/\OuN,OuNH ----- Q)

we obtain:

1 QA_N Q_N41 ap Qs—1Y\ __
(6 NT_N T —N+1 R R A ) - /\Oé—N,Oé—N-H ,,,,, Oéo)‘oc—N+17Ot—N+2 ----- ay T

XA\

Qs N—1,05— N seor Oés—l/\ast,OéstH ,,,,, as—1,0 -+ as 1,0,...,0 7é 0.

Inequality to zero holds iff all the values A,, .. a,, in this equation are nonequal to
zero. For every such A\ we construct an arc

(Oézem QG N41 -+, Oéze1) - (OézeNH, QG_N42, - - - 7061')-

3. Checking every coset for each ¢(x) is nonequal to zero and performing the same
operations we obtain digraph I" where each arc corresponds to a different nonzero value
of the mask.

Theorem 2 (Necessary condition in terms of graphs). Let p(z) be a scaling
function with ¢(x) € D_n(B7;) which generates orthogonal MRA on Vilenkin group.
Then digraph T" constructed with the algorithm 4 has the following properties:

1. If there exists an arc &’ — o, it means that N —1 last components of &’ coincide
with the first N — 1 components of ak. In other words, suffix-prefix condition holds.

2. There exists a path to 0 = (0,0,...,0) from any vertex that is not 0.

3. There are no directed cycles in the graph.

4. The vertex 0 is a source, i.e. there are no arcs coming out of it.

5. The graph includes all possible vertices (a_y,_ni1,...,0_1), ¥V a; =0,p— 1.

Proof. 1. This property is apparent by the construction algorithm.

2. Let us prove that there exists a path from any nonzero vertex to 0 = (0,0,...,0).
Since all cosets from the support of ¢(x) have the form & r® N r® g0 ordey!
and

a 1 Q_N_ OQ_N41 ap Qs—1Y\ __
§0(®—NT NT-_N+1---To ---Tsq ) - /\CLN@uNH ,,,,, QO)\Q—N+17Q—N+2 77777 apt X
X)‘as—N—has—N ----- as—l)\as—Nyas—N-&-l ~~~~~ os—1,0 - - ae 1,0,...,0 7& 0.

all values of X\ in this product are nonzero. This collection of values of A generates a
path

(N, Ni1y ey 1) = (N1, 0 Ny2y .oy 0p) — -+ — (g, 0,...,0) — (0,0,...,0).

Thus, since any coset from the support of $(x) generates a path ending with 0, there
exists a path from any nonzero vertex to 0 = (0,0,...,0). This proves the property.
3. Let us prove this one by contradiction. Let the graph I' contain a directed cycle

al—at—...a" —a.

We rewrite this path using the 1st property and specifying the components of
vertices:

(alaa2a .- -,aN—leéN) - (0427043, cee 704N705N+1) -
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- (Oék—N+1, ANy -y O—1, Oék) - (ak—N+27 Qp—N43, -+ -, O, 041) -
— s (Oék, ag,...,AN_1, OéN) - (041, Qg,...,AN_1, OéN)-

By construction, every arc corresponds to nonzero value of A. Existence of such path
means that

)\a17a2:-~7aNaaN+l >\a27a31'“)aN+11aN+2 T Aakaalv--'aaNflyaN 7é 0

Let us recall that by the 2nd property there exists a path from any vertex to 0 vertex.
Thus, at least one vertex @’ from the cycle is connected not only to a’*!, but is also a
part of a path @/ — &' —a'tt — ... —= 0.

Without the loss of generality we consider this vertex to be a'. Consequently, there
exists a path

(041,0627 e 705N71704N> - (042,0437 .- ~,04N7Oéz) - (04270637 . 70417041+1) — o

- (as—Naas—N—i—la s 7a8—17a8) - (as—N+1aas—N+27 s ,OZS,O) ...
— (ay,0,...,0,0) — 0,

which corresponds to the product

Aa17a27~~~7aN,az >‘02,a3,~~,az7az+1 s >‘0457N71,0457N,~~,01571>‘01st,04st+17~~7%th s /\a57170,~~,0 7é 0.

[t is possible to construct a product

/\O<17a2,---,aN,O<N+1)‘a27a37---7aN+17aN+2 s )‘ak,alw--,az\rq,az\f X
X>\0¢170¢27---706N70¢N+1 /\04270437---704N+170¢N+2 e Aak7a1,---7aN—1,aN X
X>\0¢170¢27---706N70¢N+1 /\04270437---704N+170¢N+2 e Aak7a1,---7aN—1,aN X

X)‘a170627---7061v,az>‘a2,037---,az704l+1 s Aas—N—lvas—Na--WO‘S—lAO‘S—NvO‘S—N—O—lv---vO‘S—laO s as 1,0,...,0 7é 0,

where the product Ao, s, an.anii Aasias,anisanss - - - Aagar,..ay_1,ay 1S multiplied by
itsell n times, n is an arbitrary natural number.
This product means that V n € N the following is true:

1 ayg Qpyq Qs
(S NH PN kTN k1 - ToNpikth—1) X TNk - Nk - - - ToNnkps—t) 7 O-

This contradicts the compactness of support of ¢(x). Thus, T' does not contain
directed cycles.

4. This property follows from the second and the third ones. We also prove it by
contradiction.

Let an arc 0 — @’ exist in I". By the second property there exists a patha/ — --- — 0.
Thus there exists a directed cycle 0 — @/ — --- — 0, which contradicts the third
property.

5. Since the necessary condition of the mask >~ [Aa y.a wiria 100l = 1 holds,

@Q

for any collection a_n,a_ni1,...,a_1 there exists at least one ap such that the
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corresponding value of the mask is not equal to 0. This, in turn, means that for every
such collection there exists an arc

(Oé—N, Q_N41,--- 704—1) - (Oé—N+h sy 0, Oéo)-

Thus, the constructed graph includes all possible vertices (a_y,a_ni1,...,_1),
Va=0p—1. O

Let us denote the collection of graphs constructed using algorithms 1-2 as I';. Let
us denote the collection of graphs satisfying the properties of Theorem 2 as I'5. At this
point we can see the following implication:

[' € Ty generates p— FT of a scaling function =
= ¢— FT of a scaling function-generates I' € 'y,

thus I'y C I's. But if the set I'y is wider then the algorithms 1-3 are not able to generate
any possible scaling function! On the other hand, if I'; = I'y then the algorithms are
actually the necessary and sufficient condition for ¢ to be an orthogonal scaling function
with compact support. Let us prove this.

Theorem 3. Set I'; contains the set T's, i.e. I'yo C I'y.

Proof. To prove the fact, we need to show that any graph satisiying the properties
from Theorem 2 can be constructed from some N-valid tree using algorithms 1-2.

Consider I' € T'y. Let us construct 7 from algorithm 1 based on this graph.

Step 1. Choose @' = (af,a3,...,ak), ai = 0,p— 1. Then choose the longest path
of the form p® = @' — p>M — ... — piv() — 0, i.e. the longest path starting from
o' and ending with 0. This path exists since there are no cycles (and thus no paths of
unlimited length) and since there exists a path from each nonzero vertex to 0. If there
exist several paths of maximal length we choose any of them. Let us include this path

into the tree. At this point the tree consists of the only “branch™

L, pQ’(l) — . — ]_911’(1) — 0.

a

Denote pt) =gt ph+h(1) = Q.

Step 2. Choose the next value @® = (a?,a3,...,a%), a? = 0,p— 1. Choose the
longest path p® = @? — p>@ — ... = p2® - 0. Denote p? = @2, pt12) = 0.
Again, let us mention that if there exist several longest paths we choose an arbitrary
one. Include this path into a tree.

Out of all vertices of p® already in the tree choose vertex p*(?) with the lowest .
It's guaranteed that at least 0 is already in the tree. Two cases are possible: either the
whole “tail” of the path p*() — pF+1.2) — ... 22 () is already in the tree or not.
In the latter case it means that there exists path of the same length from p*® to 0.
Indeed, since we chose the longest paths from @?, the “tail” of such path starting from
any p™® is the longest path from the vertex p™(?),

Case 1. The “tail” is in the tree already.

In this case 3 k,j : p® = p?»()| where k, j are the greatest of all such values, and
Vi, pFti?) = i+ If k =1 then the whole path p® is in the tree already and we do
not change it. Otherwise connect the path @* — --- — p*~1®) to p( = p?() We have
included his path in the tree. No cycles have appeared in the process, so our structure
is a tree, still.
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Case 2. The “tail” is not in the tree.
As we have already discussed, in this case the path from p*®) to 0 existing in the
tree (denote it by p»® — pF+L(2) — ... — 5122 (), has the same length as the “tail”

pP @) — pFH@ oo pl2(@) 5 0. It means that original graph I' contains both of
them. Let us choose
SO Z g 2O RO LG L @) ]

instead of p® and include it in the same way as Case 1.

Step n. Choose the next vertex @". Choose the longest path p™ = a» —
— p>™ — . — ph( — 0. Assume all paths p™,p@ ... p(»=D have already been
included in the tree, and include p™ into it. Denote p™() =&, pi*tH(®) =0

Similarly to Step 2 we have already chosen p®( in the tree and having the lowest
possible index k. The “tail” of p*(™ — pFtL(0) — ... — plu(®) 0 is either in the tree
already or we can rechoose it to satisfy this property.

If k = 1 then the whole path p(™ is in the tree already and we don’t change anything.
Otherwise connect the path @* — --- — pF=b(™ to p*( which is in the tree already.
The path is included, no cycles have appeared, we still have a tree.

Choosing all possible «; we obtain a tree with all those vertices. During the
construction process we used paths from I'" € T'y, thus:

1) every possible a; appears in the tree only once;

2) the vertex 0 is a root;

3) if there exists an arc @’ — @;,, that implies that the last N — 1 components of &’
are equal to the first N — 1 components of @**!, i.e. suffix-prefix property holds.

These properties mean that we got an expanded N-valid tree T'. It is easy to return
to the shortened one 7' if needed. Let us now reconstruct I' using this tree.

All the arcs of T also exist in I'. Let us add the arcs which exist in T' but not in 7.

Let us prove that each added arc is the arc from higher level vertex to the lower
level one. Indeed, by construction any path a@® — a*** — ... — @*** — 0 of length s+2
is the longest path of I' starting from @*. Let @’ be a vertex of a greater or equal level,
i.e. the path @/ — a’*! — ... — @/™1 — 0 has the length s; + 2, where s; > s. If we
need to connect @* with @’ while reconstructing arcs of I, it means that there exists
the path @* — @/ — a@/™! — ... — @’™1 — 0 and it has the length of 57 +3 > s+ 2
greater than the chosen longest path a* — a**! — ... — @**s — 0. It is impossible by
construction.

Thus, for an arbitrary I' € T'y we found N-valid tree 7" which can generate I' using
algorithm 2. The theorem is proved. O

The collection of Theorems 1-3 shows that there is a bijection between all possible
supports of scaling function and graphs of class I'y = I's. Algorithms 1, 2 describe a way
of constructing such graphs, algorithm 3 shows how to construct an orthogonal scaling
function. On the other hand, we have a descriptions of all these graphs in Theorem 2.
These are all small, but pleasant consequences of the work. The main achievement is
the following, though.

We have proven that by the use of algorithms 1-3 we can obtain any possible
o(x) € Dy (G_N) which generates an orthogonal MRA on Vilenkin groups, thus the
algorithms 1-3 can be viewed as a necessary and sufficient condition for such function.
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Heo6xoaumoe 1 [0CTaToO4HOE YC/IOBUE OPTOrOHa/IbHOM MacluTabupyoLei

¢pyHKL MM Ha rpynnax BuneHkuHa

I'. C. bepaHuKoB

Bepnnukos eb Cepreesid, accUCTEHT Kadpepbl MaTeMATHeCcKoro aHanuaa, CapaToBCKuii HauMoHab-
Hbli NCCNEA0BaTENLCKIIA FOCYAAPCTBEHHLIA YHUBEPCUTET MeHM H. I, HYepHbiwesckoro, Pocens, 410012,
Caparos, yn. ActpaxaHckas, A. 83, evrointelligent@gmail.com

CylLecTBYIOT HECKONBKO MOAXOA0B K 33Aa4e MOCTPOEHUS OPTOrOHANBHOTO KpaTHOMAcWTabHoro aHanuaa
Ha rpynnax BuneHkuHa, HO Bce OHM CBOASTCS K MOWCKY Tak Ha3blBaeMoii Maclutabupytolier yHkLmn. B
2005 r. H0. A. ®apkoB 1cnonb3oBan Tak HasbiBaeMble «BoKMPOBaHHbIE» MHOXECTBA, YTOObI CTPOUTL BCE
BO3MOXHbIE MacLITabMpytoLLMe GoyHKLNM C KOMMAKTHBIM HOCUTENIEM U OTPaHYEHHON YacTOTHON MOMOCON

HayyHbir oTaen
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LNS KaX[0ro Habopa HeKUx mapameTpoB, ero YCMoBUst OKasanucb HeoOXOAWUMbIMUA 1 AOCTaTO4HBIMA.
C. ®. Nykomckuia, 0. C. Kpycc n I'. C. BepaHukos npencrasuau apyroil noaxos s 2014-2015 rr., ko-
TOpbIi UIMEET HeKne NpeumyLLecTsa nepes ApyriMi U UCNOMb3yeT annapar AUCKPETHON MaTeMaTuku Ans
LOCTVKEHNS TeX Xe Lieneil. Peaynbtatom 3Toro noaxona SBNSETCS anroputM NOCTPOEHUS OPTOrOHaNbHbIX
MacLITabUPYHOLLMX CPYHKLAA C OrPaHNYEHHOM YaCTOTHOI MONOCOI 11 KOMMAKTHBIM HOCUTENEM B KOHKPETHOM
BUAE, UCMONb3YS HEKMIA KNAcC OPUEHTUPOBAHHBIX rPacpoB, KOTOpbIE, B CBOK 04epellb, CTPOSTCS MO TaK
HasblBaeMbiM [N -BanuaHbIM AEepeEBbSM, BBELEHHEIM TEMU Xe aBTopami B 2012 r. [lo 9T0ro MOMeHTa, o[-
HaKo, BblNo HEM3BECTHO, JOCTATO4HO M 3TOT aNrOPUTM XOPOLL, YTOOLI MOPOXAATH MHOBYI U3 BOMOXHBIX
OpTOroHa/bHbIX MacLUTabMpyIoOLMX (OYHKLIIA TaKoro knacca. d1a pabota OMuChIBAET BbILEYMOMSHYTIA an-
rOPUTM 1 [1OKa3bIBAET, YTO €ro MOXHO BOCMPUHIMATL Kak HE0OXOAMMOe 11 JOCTATO4HOE YCNoBIe, TO eCTb
OH MOXeT NopoX.aTb NMOYI0 BO3MOXHYK OPTOrOHANbHYI MaCLLTabuMpyHoLLyl (oyHKLMI. JONONHUTENEHO
Mbl NONy4UM Apyroe, 6onee yLobHOE ONMcaHNe NHTEPECYIOLLEro HAC KNacca OpPUEHTPOBaHHBIX rpagooB.

KnroyeBbie cnosa: rpynna BuneHkuHa, abenesa rpynna, BeiiBneTsl, Macwrabupyrouas dyHkums, KMA,
OpWEHTUPOBaHHbIE rpagobl.
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