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The survey is devoted to most recent results in the value region problem over different classes

of holomorphic univalent functions represented by solutions to the Loewner differential equations

both in the radial and chordal versions. It is important also to present classical and modern solution

methods and to compare their efficiency. More details are concerned with optimization methods

and the Pontryagin maximum principle, in particular. A value region is the set {f(z0)} of all pos-
sible values for the functional f 7→ f(z0) where z0 is a fixed point either in the upper half-plane

for the chordal case or in the unit disk for the radial case, and f runs through a class of confor-

mal mappings. Solutions to the Loewner differential equations form dense subclasses of function

families under consideration. The coefficient value regions {(a2, . . . , an) : f(z) = z+
∑

∞

n=2
anz

n},
|z| < 1, are the part of the field closely linked with extremal problems and the Bombieri conjecture

about the structure of the coefficient region for the class S in a neighborhood of the point (2, . . . , n)

corresponding to the Koebe function.
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INTRODUCTION

Geometric function theory of a complex variable studies metric and geometric prop-
erties of conformal mappings w = f(z) from domains in the complex plane C. Due to
the seminal Riemann theorem, all simply connected domains with at least two bound-
ary points are conformally equivalent, which means that there is a conformal mapping
f : D → B from any such domain D onto another domain B. Moreover, the function f
is unique if it satisfies the normalization conditions f(z0) = w0 and f ′(z0) > 0 at an
inner point z0 ∈ D and any w0 ∈ B. Therefore, it is convenient to consider Riemann
mappings only from (or onto) canonical domains, for example, disks and half-planes.

Extremal problems are the central objects of attention in the geometric function
theory of complex variables. The main class under consideration consists of all analytic
and univalent functions f in the unit disk D = {z ∈ C : |z| < 1} normalized by
f(z) = z +

∑∞
n=2 anz

n. This class denoted by S can be thought of as a factor set of all
conformal mappings from D with respect to linear maps w(z) = az + b, a 6= 0. The first
results in estimating functionals in the class S and its subclasses demonstrated bounds
for |f(z)|, arg{f(z)/z}, |f ′(z)| depending on |z|, coefficients |an| for initial values n and
others. A wide list of various results is given in the basic monographs [1–4].

Functional estimating is a partial case of the more general and complicated problem
to describe a value region for a functional or a system of functionals over different
classes of holomorphic mappings. Remind a far-reaching sharpening of the Schwarz
lemma due to Rogosinski [5] where the value region {f(z0)} for a fixed z0 ∈ D is
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precisely described over the class of holomorphic functions f(z) in D, f(0) = 0, f ′(0) > 0
and |f(z)| < 1 for |z| < 1. The complex-valued functional L(f) = f(z0) can be regarded
as a system of two real-valued functionals ReL(f) and ImL(f). Grunsky [6] established
the set W (z0) := {log(f(z0)/z0)}, z0 ∈ D, within the class S.

The most complicated problem concerns with the four-dimensional system of func-
tionals

{

log

∣

∣

∣

∣

f(z0)

z0

∣

∣

∣

∣

, arg
f(z0)

z0
, log |f ′(z0)|, arg f ′(z0)

}

, 0 < |z0| < 1,

on the class S. Its complete solution was obtained by Popov [7]. Another approach to
solve this problem was proposed by Gutlyanskii [8].

Also, mention the impressive description of the real four-dimensional value region

{(a2, a3) : f(z) = z +
∞
∑

n=2

anz
n ∈ S}

given by Schaeffer and Spencer in [9].
Among numerous methods to estimate functionals in the class S we point out at the

parametric method created mostly by Loewner [10], Kufarev [11] and Pommerenke [12].
In particular, it allows us to represent a dense subclass of S by integrals of the Loewner
ordinary differential equation. Gutlyanskii [8] applied the parametric method to solve
the value region problem.

Namely, to every function f from a dense subclass of S there corresponds a contin-
uous function u = u(t), 0 6 t <∞, such that f(z) = limt→∞ etw(z, t), where w(z, t) is a
solution to the Cauchy problem for the Loewner ordinary differential equation

dw

dt
= −we

iu(t) + w

eiu(t) − w
, w(z, 0) = z, z ∈ D, (1)

w(z, t) = e−t

(

z +
∞
∑

n=2

an(t)z
n

)

.

Note that if w(D, t) = D \ γ[0, t] with a Jordan curve γ, then there is a continuous u
generating f . The converse statement is false, see the Kufarev counterexample in [13].

During last decades, many mathematicians take a growing interest in the class of
all conformal self-maps of the upper half-plane H = {z ∈ C : Im z > 0}. Present the
Loewner evolution for f(·, t) : H \ γt → H.

Consider a growing slit γ[0, t], 0 6 t 6 T , along a Jordan curve. The mapping
functions f(z, t), with the hydrodynamic normalization near infinity as

f(z, t) = z +
2t

z
+O

(

1

|z|2
)

, z → ∞,

which map H \ γ[0, t] onto H, solve the Loewner ordinary differential equation

df(z, t)

dt
=

2

f(z, t)− λ(t)
, f(z, 0) = z, (2)

with a certain function λ(t) that is a real-valued continuous driving term. The number t
is called the half-plane capacity of γ[0, t].
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Without loss of generality, it is assumed that γ[0, t] is emanating from the origin.
Then f− and f+ map the left and right sides of γ[0, t] onto the two adjoining segments
[f−(0, t), λ(t)] and [λ(t), f+(0, t)] in R = ∂H, respectively,

λ(0) = 0, f−(0, 0) = f+(0, 0) = 0.

To distinguish the two versions of the Loewner evolution, and following modern
denotations, call (1) the radial differential equation while (2) is the chordal differential
equation.

This survey is aimed to present recent results on value regions over classes of con-
formal mappings from D or H. Almost all of them are based on the parametric method
and especially on the optimality approach and the Pontryagin maximum principle devel-
oped in the frames of the Loewner theory. In this setting, a value region is identified
as a reachable set for a system of ordinary differential equations generated by Loewner
equations (1) or (2).

1. REACHABLE SETS FOR THE CHORDAL LOEWNER EQUATION

We are focused at the problem to find value ranges for the complex-valued functional
{f(z0)}, z0 ∈ H, in classes of conformal mappings from H or subsets of H. Along with
Gogosinski’s [5] and Grunsky’s [6] similar results for z0 ∈ D, add the extension by
Goryainov and Gutlyanskii [14] who gave a description of the same set {f(z0)}, z0 ∈ D,
over the subclass S(M) of bounded functions f ∈ S, |f(z)| < M in D, M > 1.

An analogue of Rogosinski’s result for univalent functions was obtained by Roth and
Schleissinger [15] in terms of hyperbolic geometry. They gave an analogous description
of the value regions {f(z0)}, z0 ∈ D, over the class of univalent holomorphic functions
f : D → D, f(0) = 0, f ′(0) > 0, and {g(z0)}, z0 ∈ H, over the class of functions
g : H → H with the hydrodynamic normalization. Their proofs are based on the radial
and chordal Loewner equations. In particular, they proved the following theorem for the
reachable set

R(z0) = {g(z0, t), t > 0}, z0 ∈ H,

over the class of functions g(z, t) having the hydrodynamic normalization at infinity and
such that g(z, ·) solve equation

dg(z, t)

dt
=

−2

g(z, t)− λ(t)
, g(z, 0) = z, (3)

with some continuous driving function λ : [0,∞) → R.

Theorem 1 ( [15]). Let z0 ∈ H. Then

R(z0) = {z ∈ H : Im z > Im z0} ∪ {z0}.

We will extend these results to functions with a fixed time T . Let K ⊂ H be bounded
and K be the closure of K. The set K is a hull if K = H∩K and H\K are connected and
simply connected. Denote H (T ) the set of conformal maps from H \K(T ) having the
hydrodynamic normalization, with arbitrary hulls K = K(T ) of half-plane capacity T ,
onto H. The problem is to find a value region

{f(z0) : f ∈ H (T ), z0 /∈ K(T )}, z0 ∈ H.
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As far as H (T ) possesses the translation and scaling properties, it is possible to reduce
the value region problem to the case z0 = i. So let us describe the value region

D(T ) := {f(i) : f ∈ H (T ), i /∈ K(T )}.

Interpret the result by Roth and Schleissinger as a description of the complementary
set H \ ∪T>0D(T ).

For 0 6 T 6 1
4
, denote by C = C0(ϕ, T ) > 0, −π

2
< ϕ < π

2
, the unique root of the

equation

2 cos2 ϕ log(1− sinϕ) + (1− sinϕ)2 = 2 cos2 ϕ logC + C2(1− 4T ). (4)

The following theorems 2–4 are proved in [16].

Theorem 2. The domain D(T ), 0 < T 6 1
4
, is bounded by two curves l1 and l2

connecting the points i and i
√
1− 4T . The curve l1 in the complex (u, v)-plane is

parameterized by the equations

u(T ) =
C2

0(ϕ, T )(4T − 1) + (1− sinϕ)2

2C0(ϕ, T ) cosϕ
, v(T ) =

1− sinϕ

C0(ϕ, T )
,

−π
2
< ϕ <

π

2
.

The curve l2 is symmetric to l1 with respect to the imaginary axis. Every point
w = u+ iv ∈ ∂D(T ) \ {i} corresponds to a unique function from H (T ).

Generalize the problem posed in Theorem 2 and consider a value region D(T ) with
T > 1

4
with possible singular solutions to the chordal Loewner equation, i.e., the point

w = i may belong to K(T ). In this case, the closure of D(T ) contains a segment
I(T ) ⊂ R. Among boundary functions corresponding to a point w ∈ I(T ) there is a
function fK(T ) which admits a continuous extension on the union of H \K(T ) and the
both sides of a curvilinear slit K(T ), so that the extended function fK(T ) maps z = i
in I(T ). We will see in the next theorem that I(T ) coincides with the whole axis R.
Preserve the denotation D(T ) for value regions over this generalized class of functions.

Introduce new denotations. Denote by ϕ0(T ) ∈ (−π
2
, π
2
), T > 1

4
, the unique solution

of the equation

log
1− sinϕ

1 + sinϕ
+

1− sinϕ

1 + sinϕ
+ 1 = log

1

4T − 1
.

For T > 1
4
, this equation has a unique solution ϕ = ϕ0(T ) depending on T . For T > 1

4

and ϕ ∈ [ϕ0(T ),
π
2
], denote by C0(ϕ, T ) > 0 the minimal root of equation (4) and by

C00(ϕ, T ) > 0 the maximal root of equation (4).
Note that, for T > 1

4
and ϕ ∈ (ϕ0(T ),

π
2
), equation (4) has exactly two roots.

Theorem 3. The domain D(T ), T > 1
4
, is bounded by two curves l1 = l11 ∪ l12

and l2 = l21 ∪ l22 having a mutual point i ∈ l11 ∩ l21. The curve l11 in the complex
(u, v)-plane, for ϕ ∈ [ϕ0(T ),

π
2
], is parameterized by the equations

u(T ) =
C2

0(ϕ, T )(4T − 1) + (1− sinϕ)2

2C0(ϕ, T ) cosϕ
, v(T ) =

1− sinϕ

C0(ϕ, T )
.
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The curve l12, for ϕ ∈ [ϕ0(T ),
π
2
], is parameterized by the equation

u(T ) =
C2

00(ϕ, T )(4T − 1) + (1− sinϕ)2

2C00(ϕ, T ) cosϕ
, v(T ) =

1− sinϕ

C00(ϕ, T )
.

The curve l2 is symmetric to l1 with respect to the imaginary axis.

Following Roth and Schleissinger, develop the results towards inverse functions.
Denote by H ∗(T ), T > 0, the class of functions g(w) = f−1(w) for f ∈ H (T ). Denote

D∗(T ) = {g(i) : g ∈ H
∗(T )}, T > 0.

It follows from the results by Roth and Schleissinger that

∪T>0D
∗(T ) = {w ∈ C : Imw > 1} ∪ {i}.

Denote by C0(ϕ, T ) > 0, −π
2
< ϕ < π

2
, T > 0, a unique root of the equation

2 cos2 ϕ log(1 + sinϕ) + (1 + sinϕ)2 = 2 cos2 ϕ logC + C2(1 + 4T ).

Theorem 4. The domain D∗(T ), T > 0, is bounded by two curves L1 and L2

connecting the points i and i
√
1 + 4T . The curve L1 in the complex (u, v)-plane is

parameterized by the equations

u(T ) =
(C0(ϕ, T ))2(4T + 1)− (1 + sinϕ)2

2C0(ϕ, T ) cosϕ
, v(T ) =

1 + sinϕ

C0(ϕ, T )
,

−π
2
< ϕ <

π

2
.

The curve L2 is symmetric to L1 with respect to the imaginary axis.

Remark that Zherdev [17] developed the results and methods in [16] and described
the value region for solutions to the chordal Loewner ODE (2) with T 6 1

4
under the

restriction |λ(t)| 6 c, c > 0, for the driving function λ in (2). Besides, he managed to
write down explicitly the parametric representation of the boundary of the domain D(T )
in the W -plane, W = X + iY , as follows:

2X2 = (1− 4T − Y 2) log Y,
√
1− 4T 6 Y 6 1.

It is important to mention that the value region {f(z0)} in H (T ) is the reachable
set of the chordal Loewner ODE, i.e., this is a set of values f(z0, T ) for all possible
trajectories f(z0, t) of the Loewner ODE emanating from f(z0, 0) = z0.

Recently, several other authors widely applied optimization methods to describe value
regions in subclasses of univalent functions. In particular, indicate the Ph.D. thesis of
Koch [18] submitted in 2016. Mainly her results relate to mappings from the unit
disk D. In this section, we will be acquainted with two Koch’s results for symmetric
maps in the upper half-plane H.

In analogy to typically real functions in the radial setting, Koch considered functions
which possess certain symmetric properties. Namely, let

I = {f : f−1 ∈ ∪T>0H
∗(T ), f(−z) = −f(z), z ∈ H}.

Define
VI (z0) = {f(z0) : f ∈ I }.

The two following theorems belong to Koch [18].
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Theorem 5. Let z0 ∈ H. If Re z0 = 0, then

VI (z0) = {z0 + it : t > 0}.

Next, assume that Re z0 > 0 and define the two curves C(z0) and D(z0) by

C(z0) =

{

√

z20 − 4t : t > 0

}

= {x+ iy ∈ H : xy = Re z0, Im z0, x ∈ (0, Re z0]},

D(z0) = {z0 + ei arg z0t : t > 0}.
Then the closure VI (z0) of the set VI (z0) is the closed subset of H bounded by C(z0)
and D(z0), and

VI (z0) = {z0} ∪ VI (z0) \D(z0).

The case Re z0 < 0 follows from the case Re z0 > 0 by reflection with respect to the
imaginary axis.

The value set {f−1(z0)} for the inverse functions is given similarly.

Theorem 6. Let z0 ∈ H. Define

V ∗
I (z0) = {f−1(z0) : f ∈ I , z0 ∈ f(H)}.

If Re z0 = 0, then
V ∗

I (z0) = {z0 − it, t ∈ [0, Im z0]}.
Next, assume that Re z0 > 0 and define the two curves C∗(z0) and D∗(z0) by

C∗(z0) =

{

√

z20 + 4t : t > 0

}

= {x+ iy ∈ H : xy = Re z0 Im z0, x > Re z0},

D∗(z0) = {z0 − ei arg z0t : t ∈ [0, |z0|]}.
Then the closure V ∗

I
(z0) of the set V ∗

I
(z0) is the closed subset of H bounded by the

curves C∗(z0), D
∗(z0) and the positive real half-axis. The set V ∗

I
(z0) is given by

V ∗
I (z0) = {z0} ∪ V ∗

I
(z0) \ (D∗(z0) ∪ [0,∞)).

The case Re z0 < 0 is symmetric.

2. REACHABLE SETS AND OPTIMIZATION METHODS

Optimization methods applied in the previous Section are rather effective in the
reachable set problem for controllable systems of ordinary differential equations, such
as the Loewner ODE. A reachable set of a system of ODE is a set of endpoints of all
its trajectories starting from a given point and spread during a fixed time T . In other
words, this is the set of points which can be reached by solutions to the system of
ODE from the initial point up to the moment T . Mainly, the value region problems
over function classes represented by the Loewner ODE are reduced to the reachable set
problems for systems of ODE generated by the Loewner ODE.

To solve the problem, we consider a set of target functionals corresponding to the
boundary points of the reachable set and construct a Hamiltonian system with a driving
function satisfying the Pontryagin maximum principle. This allows us to obtain a set of
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boundary problems for phase and adjoint systems of ODE and reformulate it for a set
of the Cauchy problems for these systems.

Shortly, this is a universal optimization scheme giving necessary local optimum cri-
teria. It remains to show that, in concrete cases, these criteria are global and sufficient.

Usually, we arrive at a final result when a set of all boundary points satisfying the
necessary optimum conditions is a closed Jordan curve (or a closed simple surface in
higher dimensions).

First, the optimization ideas in geometric function theory have been announced by
Goodman, the last Loewner’s Ph.D. student, at the International Congress of Mathemati-
cians, 1966, in Moscow. Later, Goodman exposed the approach in his Ph.D. thesis [19]
where he combined Loewner’s theory with the then new Pontryagin maximum principle.
More details appeared in papers by Friedland and Schiffer [20,21].

Saratov mathematicians applied the optimization method to solve a lot of ex-
tremal problems in different classes of univalent functions represented by the Loewn-
er parametrization. Their contribution has been mentioned, e.g., in Roth’s Ph.D. the-
sis [22], which is devoted to reachable sets of certain control systems in the class H (D)
that is the set of all analytic functions in D.

In particular, Roth wrote [22, p. i–ii]: “...we consider coefficient problems for uni-
valent functions as optimal control problems for certain finite-dimensional control sys-
tems. This point of view was initiated and successfully employed by G. S. Goodman,
S. Friedland and M. M. Schiffer and more recently by D. V. Prokhorov in a series of
papers”. And more [22, p. 6]: “Whenever a class of analytic functions is representable
as a reachable set, Pontryagin’s maximum principle applies and gives immediately some
necessary conditions for the solutions of extremal problems in this class”. In his thesis,
Roth turned to the formulation of the so-called principle of optimality for control systems
in H (D). He discussed two control systems in C

n due to Friedland and Schiffer [21]
and Prokhorov [23, 24], respectively, whose reachable sets coincide with the so-called
coefficient region of functions univalent in D. Roth concludes that the two methods
are essentially equivalent and compares their interrelation with Schiffer’s differential
equation [25].

Give a sketch of the Hamiltonian formalism. A dynamical system in C
2n is Hamil-

tonian if it is of the form
ẋ = ∇sH(x),

where ∇s denotes the symplectic gradient given by

∇s =

(

∂

∂xn+1

, . . . ,
∂

∂x2n
,− ∂

∂x1
, . . . ,− ∂

∂xn

)

.

The function H is the Hamiltonian function of the system. It is convenient to redefine
the coordinates (xn+1, . . . , x2n) = (ψ1, . . . , ψn) and rewrite the system as

ẋk =
∂H

∂ψk

, ψ̇k = −∂H

∂xk
, k = 1, 2, . . . n.

The two-form ω =
∑n

k=1 dx ∧ dψ admits the Poisson bracket {·, ·},

{f, g} =
n
∑

k=1

(

∂f

∂xk

∂g

∂ψk

− ∂f

∂ψk

∂g

∂xk

)

,

associated with ω.
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The first integrals Φ of the system are characterized by {Φ, H} = 0. If the Hamilto-
nian system admits 1 6 k < n independent involutory integrals, then it is called partially
integrable in the sense of Liouville.

In [26], for a system generated by the Loewner equation, the authors evaluated
explicitly the first integrals (Φ1, . . . ,Φn) so that [n

2
] first integrals (Φ[n/2]+1, . . . ,Φn) are

pairwise involutory and the integrals (Φ1, . . . ,Φ[n/2]) are not pairwise involutory but
their Poisson brackets give all the rest of the integrals.

Roth [27] revisited the control-theoretic interpretation of the Loewner equation.
He writes that [26, p. 94]: “...this approach has been used by many others, see e.g.
[2,20,21,28] and in particular the important contributions by Prokhorov [23,24,29,30]”.
Also [26, p. 96]: “The idea of viewing the value region as reachable sets of the Loewner
equation has been pioneered by Prokhorov [23,24,30]”. Roth poses the problem to prove
Teichmüller’s coefficient theorem using only the Loewner differential equation. He notes
that the standard method in control theory for obtaining sufficient conditions for optimal
functions makes use of Bellman functions and refers to [24] for some applications of
Bellman functions to the Loewner equation.

3. REACHABLE SETS FOR THE RADIAL LOEWNER EQUATION

Going back to results by Roth and Schleissinger [15] introduce the class of univalent
self-maps f : D → D. Let

ST = {f : D → D univalent, f ′(0) = e−T}, T > 0.

Note that if f ∈ ST then eTf belongs to the class S(M) of bounded functions from S
with M = eT . For z0 ∈ D \ {0}, denote

VT (z0) = {f(z0) : f ∈ ST}.

Roth and Schleissinger [15] described the set ∪T>0VT (z0). To formulate their result,
endow D with the standard hyperbolic metric

λD(z)dz =
2|dz|

1− |z|2 .

The induced hyperbolic distance dD(z, w) between z ∈ D and w ∈ D is then given by

dD(z, w) = log
1 + |(z − w)/(1− wz)|
1− |(z − w)/(1− wz)| .

Theorem 7 ( [15]). Let z0 ∈ D \ {0}. Then

∪T>0VT (z0) ∪ {0} = {z = |z|eiϕ ∈ D : dD(0, z)− dD(0, z0) 6 −|ϕ− arg z0|, ϕ ∈ R}.

This theorem is known as Grunsky’s result [6]. For fixed T , it was proved earlier
by Goryainov and Gutlyanski [14] in another setting. Roth and Schleissinger comment
their theorem as [15, p. 1102]: “The results in [6,14] are much more difficult to prove.
The purpose is to give a simple and direct proof”.

The three following theorems belong to Koch and Schleissinger [31]. Due to rotations
in ST , a choice of z0 ∈ D \ {0} in the value region problem for VT (z0) is reduced
to z0 ∈ (0, 1).
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Theorem 8. Let z0 ∈ (0, 1). For x0 ∈ [−1, 1] and T > 0, let r = r(T, x0) be the
unique solution to the equation

(1 + x0)(1− z0)
2 log(1− r) + (1− x0)(1 + z0)

2 log(1 + r)−

(1− 2x0z0 + z20) log r = (1 + x0)(1− z0)
2 log(1− z0)+

(1− x0)(1 + z0)
2 log(1 + z0)− (1− 2x0z0 + z20) log e

−T z0

and let

σ(T, x0) =
2(1− z0)

2
√

1− x20
1− 2x0z0 + z20

(arctanh z0 − arctanh r(T, x0)).

Furthermore, for fixed T > 0, define the two curves C+(z0) and C−(z0) by

C±(z0) = {w±(x0) := r(T, x0)e
±σ(T,x0) : x0 ∈ [−1, 1]}.

Then, if arctanh z0 <
π
2
, VT (z0) is the closed region whose boundary consists of

the two curves C±(z0), which intersect at x0. For arctanh z0 > π
2
, there are two

different cases. First assume that T is large enough that the equation σ(t, x) = π
admits a solution x ∈ [−1, 1]. Then the curves C±(z0) intersect more than twice.
There is a χ ∈ (−1, 1) such that C̃+(z0) ∪ C̃−(z0) is a closed Jordan curve, where
C̃±(z0) = {w±(x0) : x0 ∈ [χ, 1]}, and an N ∈ (−1, 1) such that Ĉ+(z0) ∪ Ĉ−(z0) is
a closed Jordan curve, where Ĉ±(z0) = {w±(x0) : x0 ∈ [−1,N ]}. Then VT (z0) is the
closed region whose boundary is the union of C̃±(z0) and Ĉ±(z0). For smaller T , VT (z0)
can be described as in the first case.

Again, we refer to the result due to Goryainov and Gutlyanski [14] in another
setting. Koch and Schleissinger explain the proof of their theorem as [31, p. 1773]: “We
use a different and more straightforward approach to directly determine the set VT (z0)
by applying Pontryagin’s maximum principle to the radial Loewner equation”.

Let

W (z0) = {f−1(z0) : f ∈ ∪T>0ST with z0 ∈ f(D}.

Theorem 9. We have

W (z0) = {reiσ : dD(0, r) > |σ|+ dD(0, z0), σ ∈ [−π, π]}.

Furthermore, determine the value set

WT (z0) = {f−1(z0) : f ∈ ST with z0 ∈ f(D)},

and WT (z0) is the closure of WT (z0). Evidently, W (z0) = ∪T>0WT (z0).

Theorem 10. Let z0 ∈ (0, 1). For x0 ∈ [−1, 1] and T > 0, let r = r(T, x0) be the
unique positive solution to the equation

(1− x0)(1− z0)
2 log(1− r) + (1 + x0)(1 + z0)

2 log(1 + r)−

−(1 + 2x0z0 + z20) log r = (1− x0)(1− z0)
2 log(1− z0)+

+(1 + x0)(1 + z0)
2 log(1 + z0)− (1 + 2x0z0 + z20) log e

T z0
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and let

σ(T, x0) =
2(1− z0)

2
√

1− x20
1 + 2x0z0 + z20

(arctanh r(t,X0)− arctanh z0).

If

T < T ∗ := log
(1 + z0)

2

4z0
,

then r(T, x0) can be extended continuously to x0 = 1, WT (z0) = WT (z0), and WT (z0) is
the closed region bounded by the two curves D±(z0) = {r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1]}.
For T > T ∗, define the two curves D̃±(z0) = {r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1]}. We have
two cases: if T is small enough that D̃±(z0) intersect only at x0 = −1, then WT (z0) in-
tersects ∂D and is bounded by two curves D̃±(z0) and by the part of ∂D between the in-
tersection points with the curves which includes the point 1. Otherwise, the two curves
intersect on (−1, 1) for the first time for some x0 = χ ∈ (−1, 1) and WT (z0) is the closed
region bounded by ∂D and the two curves D̂±(z0) = {r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, χ]}.
In the last two cases WT (z0) = WT (z0) ∩ D.

The two following theorems on value regions belong to Koch and Schleissinger [32].
Denote by T the class of analytic typically real self-mappings of D normalized as
f(0) = 0 and f ′(0) > 0. For τ ∈ (0, 1], denote similarly T (τ) the class of functions
f ∈ T with the restriction f ′(0) = τ . Remind that typically real functions f in D are
characterized by the condition Im z Im f(z) > 0 in D. Let

VT (τ)(z0) = {f(z0) : f ∈ T (τ)}.

Theorem 11. Let z0 ∈ D \ {0} and τ ∈ (0, 1]. The set VT (τ)(z0) is the image of the
closed region bounded by the two circular arc

{

1 +
4τz0

1− 2yz0 + z20
: y ∈ [2τ − 1, 1]

}

and
{

(z0 + 1)2(1 + z0(−4 + 4τ − 2x+ z0))

(z0 − 1)2(1− 2xz0 + z20)
: x ∈ [−1, 2τ − 1]

}

under the map w 7→
√
w−1√
w+1

.

Note that the value regions VT (τ)(z0) for all analytic functions and for univalent
functions with real Taylor coefficients coincide.

Denote by R> the class of all analytic self-mappings f of D normalized as f(0) = 0,
f ′(0) > 0, and having only real Taylor coefficients around the origin. Let

VR>(z0) = {f(z0) : f ∈ R
>}.

Theorem 12. Let z0 ∈ D \ {0}. Then VR>(z0) is the closed convex region bounded
by the following three curves:

A =

{

z0(z0 − x)

z0x− 1
: x ∈ [0, 1]

}

, B =

{

z0(z0 + x)

z0x+ 1
: x ∈ [0, 1]

}

,

C =

{

z20(z0 + 2x− 1)

1 + 2xz0 − z0
: x ∈ [0, 1]

}

.
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4. REACHABLE SETS FOR UNIVALENT FUNCTIONS WITH REAL TAYLOR
COEFFICIENTS

Among other works in the value region problem, select Fedorov’s paper [33] con-
cerning with the set {f(z0)}, z0 ∈ D, over the class SR ⊂ S of functions f ∈ S with
real Taylor coefficients an, n > 1, around 0.

For real z0, the problem is trivial since {f(z0)} is described by one of the following
sharp inequalities,

−|z0|
(1− |z0|)2

6 f(−|z0|) 6
−|z0|

(1 + |z0|)2
,

|z0|
(1 + |z0|)2

6 f(|z0|) 6
|z0|

(1− |z0|)2
.

On the contrary, the problem appeared to be far from triviality in the case of non-real
z0. Fedorov completely solved the problem by simultaneously considering two moduli
problems for pairs of homotopic classes of curves. Partial results in this problem were
obtained earlier by Jenkins [34].

Define the class of bounded univalent functions

SR(M) = {f ∈ SR : |f(z)| < M, z ∈ D}, M > 1,

with real Taylor coefficients around 0. Usually, extremum problems in subclasses of
bounded functions are more difficult than in the whole classes. In the parametric
method, theoretically, solutions of extremum problems for bounded functions are of
comparative difficulty with unbounded maps. The main difference between the two ver-
sions is in constructing an optimal behavior of driving functions either on the maximal
set [0,∞) of time-parameter or on its subset [0, logM ].

Reduce the value region problem to the optimal control problem in the frames of
the Loewner theory. Every function f corresponding to a boundary point of the value
region {f(z0)} over SR(M) is given by

f(z) =Mw(z, logM),

where w(z, t) = e−t(z + a2(t)z
2 + . . . ) solves the Loewner differential equation

dw

dt
= −w 1− w2

1− uw + w2
, t > 0, w(z, 0) = z, z ∈ D,

with a piecewise continuous driving term u = u(t), −2 6 u 6 2, having at most one
discontinuity point. The set {f(z0)} in SR(M) is a reachable set for this Loewner ODE
at t = logM with the initial point z0.

In [35], the authors described the value region {f(z0)} in SR(M) in an extremely
implicit form. They proved that the set {f(z0)} in SR(M) is bounded by the two simple
curves γ1 and γ2. The boundary curve γ1 is given by

γ1(λ) =

{

MK−1
λ

(

Kλ(z0)

M

)

: −1 6 λ 6 1

}

,

where
Kλ(z) =

z

1− 2λz + z2
, −1 6 λ 6 1.

As for γ2, it is parameterized as follows. Rewrite the Loewner ODE as a sys-
tem of ODE for the two real phase coordinates of x = (x1, x2), x1(t) = |w(z0, t)|
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and x2(t) = argw(z0, t) with the main branch of the argument, x1(0) = |z0| and
x2(0) = arg z0. Construct a Hamilton function H(x,Ψ, u), where the vector Ψ = (Ψ1,Ψ2)
obeys the adjoint system of differential equations

dΨ1

dt
= −∂H

∂x1
,

dΨ2

dt
= −∂H

∂x2
,

and u = u∗(x,Ψ) is a maximum point of H(x,Ψ, u) in u for u ∈ [−2, 2]. Next, solve
the Cauchy problem for the system of four ODE for the phase and adjoint variables
with the initial data for Ψ such that Ψ1(0) is equal either (-1) or 1, and Ψ2(0) is a free
parameter λ parameterizing γ2(λ), λ ∈ E. The set E is determined by the condition
that, for λ ∈ E, a unique maximum point u0 = u∗(x(0),Ψ(0)) of H(x(0),Ψ(0), u) in u
belongs to (−2, 2). Then,

γ2(λ) = w(z0, logM,λ)

and w(z0, t, λ) solves the Loewner ODE with u(t) = u∗(x(t),Ψ(t)) and λ ∈ E.

It is interesting to add that the adjoining vectors Ψ(logM) corresponding to the
parameter λ are normal vectors for γ2 at inner points γ2(λ), λ ∈ E.

5. VALUE REGIONS FOR FUNCTIONS WITH FIXED BOUNDARY POINTS

Since the seminal paper by Cowen and Pommerenke [36], the study of holomorphic
functions with finite angular derivatives at prescribed points has been an active field of
research in complex analysis.

Given a holomorphic function f in D and a point σ ∈ ∂D such that there exists a
finite angular limit f(σ) = ∠ limz→σ f(z), the angular derivative at σ is

f ′(σ) = ∠ lim
z→σ

f(z)− f(σ)

z − σ
.

On the one hand, for univalent functions f , existence of the angular derivative f ′(σ)
different from 0 and ∞ is closely related to the geometry of f(D) near f(σ). Moreover,
if there exists f ′(σ) 6= 0,∞, then the behavior of f at the boundary point σ resembles
conformality.

On the other hand, for the dynamics of a holomorphic self-map f : D → D, a crucial
role is played by the points σ ∈ ∂D for which f(σ) = σ and the angular derivative f ′(σ)
is finite, see e.g. [37].

Such points σ are called boundary regular fixed points. In particular, a classical
result due to Wolff and Denjoy asserts that if f ∈ Hol(D,D) has no fixed points in D,
then it possesses the so-called boundary Denjoy –Wolff point, i.e., a unique boundary
regular fixed point τ such that f ′(τ) 6 1.

Consider univalent self-maps f : D → D with a given boundary regular fixed point
σ ∈ ∂D and the Denjoy –Wolff point τ ∈ ∂D \ {σ}. Using automorphisms of D, we may
suppose that τ = 1 and σ = −1 and look for a sharp value region of f 7→ f(z0) for all
such self-maps of D with f ′(−1) fixed. Define the strip

S =
{

ζ : −π
2
< Im ζ <

π

2

}

.

Let
ζ0 = x01 + ix02 := ℓ(z0),
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where

ℓ : D → S, z 7→ log
1 + z

1− z
,

is a conformal map of D onto S. For T > 0, define

a±(T ) := e−T/2 sin x02 ± (1− e−T/2), R(a, T ) := log
1− a

1− a+(T ))
log

1 + a

1 + a−(T )
,

V (ζ0, T ) := {x1 + ix2 ∈ S : a−(T ) 6 sin x2 6 a+(T ),

|x1 − x01 − T/2| 6
√

R(sin x2, T )}.
The following theorem gives a description of the value region {f(z0)} over the class

of univalent self-maps f : D → D with two fixed boundary points ±1.

Theorem 13 ( [38]). Let f ∈ Hol(D,D) \ {idD} and T > 0. Suppose that
(i) f is univalent in D;
(ii) the Denjoy –Wolff point of f is τ = 1;
(iii) σ = −1 is a boundary regular fixed point of f and f ′(−1) = eT .
Then

f(z0) ∈ V (z0, T ) := ℓ−1(V (ℓ(z0), T )) \ {z0} for any z0 ∈ D.

This result is sharp, i.e., for any w0 ∈ V (z0, T ) there exists f ∈ Hol(D,D) \ {idD}
satisfying (i)–(iii) and such that f(z0) = w0.

In the same paper, the authors also characterize functions f corresponding to bound-
ary points of V (z0, T ) in the last theorem. Let K be the Koebe function

K(z) =
z

(1− z)2
.

Define the functions pα as

pα(z) = K−1(αK(z)), α ∈ (0, 1),

which map D onto D \ [−1,−r], r = r(α) ∈ (0, 1).
Since the Koebe function K and its rotations are known to be extremal in many

extremal problems and pα plays the role of the Koebe function in the class of univalent
functions f : D → D, it is natural to expect that functions of the form f = h1 ◦ pα ◦ h2,
h1, h2 ∈ Aut(D), would be extremal in the value region problem. The following theorem
confirms these expectations.

Theorem 14 ([38]). For any w0 ∈ ∂V (z0, T ) \ {z0}, there exists a unique f =
= fw0

satisfying the conditions (i)–(iii) in the value region problem for univa-
lent self-maps f : D → D with two boundary fixed points ±1 and such that
fw0

(z0) = w0. If w0 = ℓ−1(ζ0+T ), then fw0
is a hyperbolic automorphism of D, namely,

fw0
(z) = ℓ−1(ℓ(z) + T ). Otherwise, fw0

is a conformal mapping of D onto D minus
a slit along an analytic Jordan arc γ orthogonal to ∂D, with f ′

w0
(1) = 1. Moreover,

fw0
= h1 ◦ pα ◦ h2 for some h1, h2 ∈ Aut(D) and α ∈ (0, 1) if and only if

w0 = ℓ−1(x01 +
T

2
+ i arcsin a±(T )).
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Note that z0 is a boundary point of the value region V (z0, T ), but does not belong
to V (z0, T ). However, z0 would be included, and this would be the only modification
of V (z0, T ), if the equality f ′(−1) = eT in the value region problem is replaced by the
inequality f ′(−1) 6 eT and the requirement f 6= idD is removed and we assume as a
convention that idD satisfies (ii). Under the theorem conditions modified in this way,
f(z0) = z0 if and only if f = idD.

If f ∈ Hol(D,D) has boundary regular fixed points at ±1, then replacing f by h ◦ f ,
where h is a suitable hyperbolic automorphism with the same boundary fixed points, we
may suppose that τ = 1 is the Denjoy –Wolff point. Hence, we deduce a sharp estimate
for f ′(−1)f ′(1), which was obtained earlier in [39] with the help of the extremal length
method.

Corollary 1 ( [38]). Let z0 ∈ D and let f ∈ Hol(D,D) be a univalent function with
boundary regular fixed points at 1 and (-1). Then

√

f ′(−1)f ′(1) > max

{

1 + sin Im ℓ(z0)

1 + sin Im ℓ(f(z0))
,

1− sin Im ℓ(z0)

1− sin Im ℓ(f(z0))

}

.

This inequality is sharp. The equality can occur only for hyperbolic automorphisms
and functions f of the form f = h1 ◦ pα ◦ h2, h1, h2 ∈ Aut(D), α ∈ (01).

Value region problems over classes H , H (T ), S, S(M), SR, SR(M) and others
required the classic Loewner parametric representations by the chordal and radial dif-
ferential equations and their modifications and generalizations. However, a parametric
theory for classes of univalent self-maps with fixed boundary points was created in the
last decades, mainly in papers due to Goryainov and his colleagues. Solutions to the
value region problems for mappings with boundary fixed points are based on a new
version of Loewner’s parametric method, which was discovered recently by Goryainov
and Kudryavtseva [40].

Theorem 15 ([40]). Let B[q; a] denote the class of holomorphic univalent self-maps
f : D → D with a Denjoy –Wolff point q and a boundary regular fixed point a and let
{f t}t>0 be a one-parametric semigroup t 7→ f t which is a solution to the differential
equation

∂f t(z)

∂t
= v(f t(z)), f t(z)|t=0 = z.

Then {f t(z)}t>0 ⊂ B[q; a] if and only if

v(z) = α(q − z)(1− qz)(1− az)h(az),

where α > 0 and

h(z) =

∫

∂D

1− æ

1− æz
dµ(æ)

with a probability measure µ on ∂D.

Goryainov [41] obtained also the sharp value region {f ′(0)} in the class of all
univalent f ∈ Hol(D,D), f(0) = 0, having a boundary regular fixed point σ = 1 with a
given value of f ′(1).

In [42], Goryainov proved that the value region D(0, T ) of f 7→ f(0) over all self-
maps f satisfying the conditions of the value region problem over self-maps D → D
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having two fixed boundary points without the univalence requirement is the closed disk
whose diameter is the segment [0, ℓ−1(T )], with the boundary point z0 = 0 excluded.
Analyzing the functions bringing the boundary points of D(0, T ), one can conclude that
∂D(0, T ) ∩ ∂V (0, T ) = {0, ℓ−1(T )}.

6. COEFFICIENT VALUE REGIONS

For z0 = 0, a value region {f(z0), f ′(z0), . . . , f
(n)(z0)} over a class of functions

f(z) = z +
∑∞

n=2 anz
n, z ∈ D, is reduced to the coefficient value region

{a2, . . . , an} =

{

f ′′(0)

2!
, . . . ,

f (n)(0)

n!

}

, n > 2.

Denote

Vn = {(a2, . . . , an) : f ∈ S}, Vmn = {(an, am) : f ∈ S} n,m > 2,

and
Mn = {(a2, . . . , an) : f ∈ S̃}, n > 2,

where S̃ stands for the class of functions f ∈ S which are C∞-smooth on ∂D. A good
collection of qualitative results is contained in [9,43]. Namely:

(i) Vn is homeomorphic to a (2n− 2)-dimensional closed ball, and its boundary ∂Vn
is homeomorphic to a (2n− 3)-dimensional sphere;

(ii) every point x ∈ ∂Vn corresponds to exactly one function f ∈ S;
(iii) with the exception for a set of smaller dimension, at every point x ∈ ∂Vn there

exists a normal vector satisfying the Lipschitz condition;
(iv) there exists a connected open set X1 ⊂ ∂Vn, such that ∂Vn is an analytic

hypersurface at every point of X1. The points of ∂Vn corresponding to the functions that
give the extremum to a linear functional belong to the closure of X1.

On an n-dimensional manifold Mn, a sub-Riemannian structure is a smoothly varying
distribution D of k planes together with a scalar product. The distribution D is a linear
sub-bundle of a tangent bundle TMn of Mn. If k < n, then the Hausdorff dimension
of Mn is larger than n. Suppose that a system of vector fields X1, . . . , Xk form an
orthonormal basis of D with respect to scalar product 〈·, ·〉. The pair (D , 〈·, ·〉) is a
sub-Riemannian metric on Mn. Let all vector fields X1, . . . , Xk together with their
commutators form the total tangent space TMn. If the number of these commutators
is independent of the point of Mn, then it is said that X1, . . . , Xk satisfy the bracket
generating condition.

Theorem 16 ([44]). Let Mn be the coefficient value region for S̃ and let L1, . . . , Ln

be the vector fields defined by

Lj = ∂j +

n−j
∑

k=1

(k + 1)ak∂j+k, ∂j =
∂

∂aj
.

Then the system (L1, L2) satisfies the bracket generating condition and the distribution
is D = span(L1, L2).

The Hausdorff complex dimension of the sub-Riemannian manifold Mn is equal to
(n
2
+ 1)2 − 9

2
for odd n and is equal to (n

2
+ 1)2 − 2 for even n.
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Call attention to the theory of integrable systems in connection with the Loewner
equation. Let λ(z, t) be a meromorphic function in z that depends on an infinite family
of generated times t = (t0, t1 . . . , tn, . . . ), t0 = x, with the expansion

λ(z, t) = z +
∞
∑

n=0

An(t)

zn+1

about infinity. The dispersionless Kadomtsev –Petviashvili (dKP) hierarchy is an infinite
set

∂λ

∂tn
= {Ln+1, λ}, n = 0, 1, 2, . . . ,

where {·, ·} is the Poisson bracket

{F,G} =
∂F

∂z

∂G

∂x
− ∂F

∂x

∂G

∂z
,

Ln =
1

n
(λn)>0, n = 1, 2, . . . ,

denotes the polynomial part of λn.
A finite-dimensional reduction suggests that λ depends on t via a finite number

of functions, λ(z, t) = λ(z, u1(t), . . . , uN(z, t)). Takebe, Teo and Zabrodin [45] showed
that the chordal Loewner PDE serves as the consistency condition for the one-variable
reduction of the dKP. A function λ depends on t via one function s(t) and

∂λ

∂s
= − κ

z − ξ

∂λ

∂z
,

which is the Loewner PDE, where κ is the derivative in s of the coefficient at 1/z in
the Laurent expansion of λ.

In [46], the authors showed that the chordal Loewner evolution has an infinite
number of conservation laws, i.e., moments, and that the Loewner PDE is exactly the
Vlasov equation under an appropriate change of variables, that the Loewner ODE implies
the hydrodynamic-type conservation equation. Starting with the Loewner evolution,
the authors obtain integrable chains by splitting time. This approach demonstrates the
universality of the Loewner equation as an attraction point for several integrable chains.

Mention that, for the function f(z, t(x, s)) = f(z, x, s), the Vlasov equation

z
∂f

∂x
+
∂f

∂s
− ∂A0

∂x

∂f

∂z
= 0

describes the time evolution of the distribution function of a plasma consisting of
charged particles with long-range interaction.

Going back to the coefficient value region Vn, recall the exclusive role of the Koebe
function K(z) =

∑∞
n=1 nz

n, especially in the connection with the famous Bieberbach
conjecture stating that the inequality |an| 6 n holds for all f ∈ S with the equality sigh
only for K(z) and its rotations.

Studying the local version of the Bieberbach conjecture, Bombieri, the Fields medal-
ist, was interested in metric and geometric properties of Vn in a neighborhood the point
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(a2, . . . , an) = (2, . . . , n) ∈ ∂Vn corresponding to K(z). Bombieri [47] conjectured that
the numbers

σmn := lim inf
S∋f→K

n− Re an
m− Re am

, m, n > 2,

where f → K locally uniformly in D, are equal to the numbers

Bmn := min
θ∈[0,2π]

n sin θ − sin(nθ)

m sin θ − sin(mθ)

for all m,n > 2.
Bombieri’s number σmn determines a locally support hyperplane given by

Re (an − σmnam) = n− σmnm

in a neighborhood of the point (n,m) ∈ Vmn corresponding to K. It is proved in [48]
that σmn is a maximal number for which K locally maximizes the linear functional,

σmn = sup{λ ∈ R : Re (an − λam) is locally maximized on S by K(z)}.

For (m,n) = (3, 2), this property has been proved by Greiner and Roth in [49]. Such
interpretation can serve to define a number σmn(M), M > 1, as a maximal num-
ber for which Re (an − λam) is locally maximized on S(M) by the Pick function
PM(z) = MK−1(K(z)/M). Values σ23(M) and σ32(M), M > 1, are evaluated in [50]
and [51], respectively.

Theorem 17 ( [50,51]). For 1 < M 6 ∞, we have

σ23(M) = − 4

M
,

and

σ32(M) =















M(e− 1)

4(Me− 2e+ 1)
, e 6M 6 ∞,

M

4(M − 1)
, 1 < M 6 e.

Bombieri’s conjecture is true for the class SR, see the proof due to Bshouty and
Hengartner in [52]. The inequality σmn 6 Bmn was proved in [48] for all m,n > 2.
Hence, σmn = 0 when Bmn = 0.

Greiner and Roth [49] answered negatively to partial Bombieri’s conjecture. They
evaluated σ32 showing that σ32 < B32. Later, σ42, σ24 and σ34 were evaluated in [53],
each time disproving Bombieri’s conjecture for these pairs of indices. Related versions of
Bombieri’s conjecture are discussed by Aharonov and Bshouty in [54]. Using the linear
Loewner PDE, Leung [55] derived a variational formula in S near the Koebe function
K and disproved Bombieri’s conjecture for index pairs (m, 2) with m > 2 and for (m, 3)
with odd m > 3. In particular, Leung’s variation leads to a statement that Bombieri’s
conjecture fails for (m,n) when

Bmn =
n3 − n

m3 −m
. (5)
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Efraimidis [56] and Efraimidis and Pastor [57] selected a lot of pairs (m,n) for which
Bmn are given by the latter expression. Namely, they showed that Bmn satisfies (5), i.e.,
Bombieri’s conjecture fails, for the following integers m and n, m > n > 2,

(a) both m and n are odd, or
(b) both m and n are even, or
(c) m is even, n is odd, 0.5 6 n/m 6 0.8194 and m > 81.
Necessary criteria for the Bombieri conjecture are derived in [58] in terms of in-

equalities for solutions to systems of differential equations in variations for the Loewner
ODE.

We see that Bombieri’s conjecture is attacked by different methods: Schiffer’s dif-
ferential equation for support points of S [48, 49], variational method in the class S
[52, 55–57], Lebedev –Milin inequalities based on the Grunsky approach [54], the
Loewner theory and optimal control methods and the Pontryagin maximum princip-
le on solutions to the Loewner ODE [47, 50, 51, 53, 58]. Roth [27] gave a statement
of Teichmüller’s coefficient theorem entirely in terms of the Loewner equation. This
allowed him to compare Schiffer’s differential equation and Pontryagin’s maximum prin-
ciple. Roth concluded that two necessary conditions for f ∈ S being extremal for a
coefficient functional over S provided by Schiffer’s theorem and by Pontryagin’s maxi-
mum principle are in fact equivalent. Roth claims that the Schiffer differential equation
is analogous to the Euler equation in the classical calculus of variations and notices that
the implication from Schiffer’s equation to Pontryagin’s maximum principle traces back
to early periods in the geometric function theory.

In author’s papers cited in this survey, we are focused on the optimal control theory
methods applied to Bombieri’s problem. We introduce the Loewner ODE and generate a
control system for the coefficients of functions f(z, t) ∈ S from a Loewner chain, z ∈ D,
t > 0. Following an optimization scheme, we deduce an adjoint control system of ODE
and build a pseudo Hamilton function H depending on a phase coefficient vector a(t)
and an adjoint vector Ψ(t), on a driving function u and also on time t. The Pontryagin
maximum principle is a necessary condition for the reachable set in a neighborhood
of the extremal control u = π corresponding to the Koebe function K. As far as K
is extremal in the Bombieri problem, the control u = π has to satisfy the Pontryagin
maximum principle, i.e., it maximizes H on a whole trajectory (a(t),Ψ(t)).

Acknowledgements: This work was supported by the Russian Science Foundation
(project No. 17-11-01229).
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Обзор преимущественно посвящен недавним результатам в решении задачи об об-

ластях значений в различных классах голоморфных однолистных функций, представимых

решениями дифференциальных уравнений Левнера как в радиальной, так и в хор-

довой версиях. Важно также представить классические и современные методы решения

и сравнить их эффективность. Наиболее подробно затронуты методы оптимизации и,

в частности, принцип максимума Понтрягина. Областью значений является множество

{f(z0)} всех возможных значений функционала f 7→ f(z0), где z0 — это фиксированная

точка из верхней полуплоскости в хордовом случае или в единичном круге в радиаль-

ном случае, а f пробегает класс конформных отображений. Решения дифференциальных

уравнений Левнера образуют плотные подклассы рассматриваемых семейств функций.

Области значений коэффициентов {(a2, . . . , an) : f(z) = z+
∑

∞

n=2
anz

n}, |z| < 1, составляют

часть поля исследований, тесно связанного с экстремальными задачами и с гипотезой

Бомбиери о структуре области значений коэффициентов на классе S в окрестности точки

(2, . . . , n), соответствующей функции Кебе.

Ключевые слова: область значений, уравнение Левнера, достижимое множество,

граничная кривая.
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