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We consider a model of protecting the confidentiality and recover-

ability of data in a distributed storage system. It is assumed that in-

formational blocks are coded into the code blocks. Then the blocks

are divided into parts and distributed among repositories of the dis-

tributed storage. A modification of the code noising method is con-

structed which simultaneously provides computational resistance

to coalition attacks on confidentiality of stored data. Moreover, the

modification also provides protection from the failure of a part of the

storage nodes. Confidentiality protection is provided for coalitions

of greater cardinality than in the case of using the classical method

of code noising. It is shown that computational resistance is based

on the complexity of solving one well-known problem of theoretical

coding.
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INTRODUCTION

Let us consider a model of safe data storage on n indepen-
dent and in general untrusted repositories S1, . . . , Sn (Figu-
re). Further these repositories are sometimes referred to as
nodes. We consider cloud repositories like Google Drive,
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The distributed storage system

Yandex.Disk, etc. to be such independent storages. The users are able to write their
data into each of n repositories and read data from at least ν(∈ N) ones (inaccessible
repositories are crossed out on the Figure). We assume that adversary coalition contains
no more than µ(∈ N) repositories (referred to as participants of coalition) and are able
to obtain data from each of them (coalition is marked with a dashed line on the Figure).
The parameters n, ν and µ are known to everybody. The challenge for the developers of a
protection system is choosing the transformation of protected data before distributing it
among repositories. On the one hand, this transformation should provide confidentiality
of protected data against coalition of cardinality µ or less, on the other hand, it should
provide a possibility of recovering the protected data when any n − ν repositories are
inaccessible. The coding method is considered to be not secret. We are interested in
non-cryptographic methods, because in this case it is not necessary to support the life
cycle of cryptographic keys.

The store model described above is actually the research subject of [1]. In [1]
transformation of protected data is a code noising method (in terminology [2]) based
on a pair of linear codes (C̃, C) where [n, l, d̃]-code C̃ with length n, dimension l, and

code distance d̃ contains [n, l − k, d]-code C, k < l. In [1] both codes are MDS-codes
(Maximum Distance Separable codes). Code noising method is optimal for this store
model if n− ν 6 d̃− 1 and

µ 6 l − k (1)

(see results in [3–6]). In this case the confidentiality is provided in theoretical-
informational sense if protected data is uniformly random distributed. The pairs of
MDS-codes are also optimal if availability of the data storage is limited [7], or if co-
alition has an access to an additional part of protected data [8]. Some experimental
estimations of code noising resistance in distributed storage are explored in [9], but the
observer has identified an attack algorithm in that case.

The article [10] considers a repetitive interception attack against the classical code
noising method. It is assumed that the observer has the opportunity to notice several
partial code blocks corresponding to one unknown informational block. In the article [10]
it is also assumed that different code blocks are observed on different subsets of coor-
dinates. The repetitive interception attack is successful if condition (1) is wrong [10].
Thus, in the distributed storage model the coalition of repositories is able to attack
confidentiality effectively with the repetitive interception attack. This attack is possible
if the system similar to one described in [1] is used and the condition (1) is wrong.
We offer a modification of the code noising method which provides high resistance to
repetitive interception even in case when condition (1) is wrong.

➮=>?@ABCDEB ✸✷✼



➮!"✳ $%&%'✳ ()✲'%✳ ❮,"✳ -.&✳ $.&✳ ❒%'.0%'12%✳ ❒.3%)12%✳ ➮)4,&0%'12%✳ ✷✵✶✾✳ 9✳ ✶✾✱ ";<✳ ✸

Our solution is based on the regular change of the coding map. Synchronization of
the sender and the receiver is not required, however, the sender needs to additionally
send the information about the mapping used. We use an approach usual in cryptography
to estimate the resistance of proposed method. According to this method it is enough to
reduce the task by breaking it into several (usually well-known) matematical problems.
In the present paper the resistance of the constructed method is based on the complexity
of one theoretical coding problem.

The article consists of introduction, two sections, and conclusion. The first section
describes an analytical model (data storage model), a code noising method and its modi-
fication. The second section analyzes the application of the constructed modified method
in a distributed storage system. An estimate is obtained for the number of storages
that may fail without affecting the possibility of correct recovering of informational
blocks from uninjured repositories (nodes). Also the resistance of the modified method
is analyzed for coalition attack.

1. DATA PROTECTION SCHEME

1.1. Analytical model

Let us briefly describe the data storage model proposed in [1]. Let i ∈ {1, ..., r}
and data from i-th source Ui be represented as informational blocks of k characters
over a finite field Fq. Each informational block is encoded independently into the code
block of n characters from Fq via encoder Enc. Then all n symbols of code block
c = (c1, ..., cn) ∈ F

n
q are distributed in n repositories so that j-th symbol cj is written to

the repository with number πi(j) (or equivalently to the node Sπi(j)) where

πi : {1, ..., n} → {1, ..., n} (2)

is a permutation. The users independently choose permutations (2) which are not private.
We also assume that the users know the permutation πi while they obtain information
from repositories. The permutations may appear different from block to block or from
file to file or other way.

To extract one informational block the user reads characters of the corresponding
code block from the repositories and then puts the whole block into the decoder Dec. The
value of π−1

i (j)-th coordinate is unknown for the user if the repository Sj is inaccessible
(e.g. due to failure or injury). In this case we consider this coordinate to be erased and
write symbol ∗ instead of its value. We assume that no more than n−ν repositories may
be inaccessible while the user is reading data. As the repositories are supposed to be
untrusted, we consider every node to be an eavesdropper which knows a value of only
one coordinate in every code block. Other coordinates are considered to be erased. The
participants of coalition of µ repositories will know values of µ coordinates in every code
block. This set of coordinates may be different from block to block because of different
permutations conducted (2). Therefore, the coalition has the opportunity to launch a
repetitive interception attack from [10] if the classical code noising method is used.

1.2. Classical code noising method

The code noising method is used in [1] for keeping data safety against adversary
coalition and inaccessibility of the repositories at the same time. We can describe this
method in the following way. Let C̃ be a linear [n, l, d̃]-code with length n, dimen-
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sion l, and code distance d̃, Ĉ and C are [n, k]-code and [n, l − k]-code respectively,

C ∩ Ĉ = 0 = (0, ..., 0)(∈ F
n
q ) and direct sum C ⊕ Ĉ is equal to C̃. Let Ĝ and G

be generating matrices of codes Ĉ and C respectively. Code noising is the function
f : Fk

q × F
l−k
q → C̃,

f(m, r) = mĜ+ rG = c

where m(∈ F
k
q) is an informational block, r is vector which is chosen randomly and

equiprobably from F
l−k
q . Let

DecC̃ : (Fq ∪ {∗})n → F
l
q

be a decoder which is able to correct no more than d̃ − 1 erasures in every code block
and has vectors from F

l
q as output. One can try to obtain the informational block from

the block c′ ∈ (Fq ∪ {∗})n by applying the decoder DecC̃ to the c′ and cutting off the
last l − k symbols of the decoder output.

Let us assume that every informational block m(∈ F
k
q) has an equal probability

pM(m) = 1/qk, i.e. random variable M is uniformly distributed over F
k
q . As we can see

in [1,4–6,8] the resistance of the code noising method strongly depends on pair (C̃, C).

In fact for every pair (C̃, C) there exists a threshold µ0(∈ N) such that if the coalition
(or eavesdropper) knows the values of no more than µ0 coordinates of the code block it
will not obtain any information about encoded informational block. Otherwise if µ > µ0

the eavesdropper can get non-zero information. In this case there is at least one set of
observed coordinates τ (|τ | = µ) which does not provide the whole set of informational
blocks as candidates to be original informational block, i.e. the size of the provided
set of candidates is less than qk. So the eavesdropper may attempt to use repetitive
interception attack from [10]. For example, as it is shown in [1], if (C̃, C) is a pair of

MDS-codes then µ0 = l − k (see (1)) where l is rank of C̃ and n− k is rank of C. The
eavesdropper can easily recover the informational block knowing few partially erased
code blocks if µ > µ0 (see [10]). We propose a modification of the code noising method
for counteracting a repetitive interception attack. We describe this modification in the
next subsection. The defense ability will be described in subsection 2.

1.3. Modified code noising method

The main idea of the modified code noising method is periodic change of encoding
functions in such way that the legal receiver can determine the exact encoding function
using the received code blocks. Note that further the user is called a legal receiver

if he or she has a permission to read data from the storage. At the same time an
illegal eavesdropper cannot determine the exact function. Note that the idea of changing
encoding functions is not new. The authors of [11] have used this idea creating the XtX
encoding construction. They have assumed that the eavesdropper is able to obtain full
data with errors (not erasures) and have analyzed properties of this construction such
as code rate and security. The principal distinction of our scheme is using only one
operation for providing security instead of two operations as in XtX construction.

We denote the set of numbers {1, ..., n} as n. Let the set supp(a) = {i : ai 6= 0} be
a support of vector a = (a1, ..., an) and the number w(a) = |supp(a)| be a weight of this
vector. For positive integers n′ 6 n the operator

Πτ : F
n
q → F

n′

q
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will be used as a projection operator on the set τ(⊆ n). If τ = {i1, ..., in′} and
a = (a1, ..., an), then Πτ (a) = (ai1 , ..., ain′

). If A ⊆ F
n
q is a set then its projection is

denoted as a set Π̂τ (A) = {Πτ (a) : a ∈ A}. Let function β : Fl
q → F

l
2 be such that for a

from F
l
q:

β(a) = b(∈ F
l
2) and supp(a) = supp(b). (3)

In order to generate matrix
G̃ = (ei)

l
i=1 (4)

of [n, l, d̃]-code C̃ and for vector k(∈ F
l
2) let us denote the submatrix of matrix (4) as

Gk so that Gk = (ei)i∈supp(k). Random encoding parametrized with binary vector k ∈ F
l
2

is a function gk : F
w(k)
q × F

l−w(k)
q → C̃ that

gk(m, r) = mGk + rGk = c (5)

where m ∈ F
w(k)
q , r is chosen from F

l−w(k)
q randomly and equiprobably, k = 1⊕k, 1 ∈ F

l
2

and w(1) = l. Let c′ be a partially erased vector corresponding to the code block c

(see (5)). If k is known then one can try to extract informational vector m′ with the
next rule:

m′ = g−1
k (c′) = Πsupp(k)

(
DecC̃(c

′)
)
. (6)

The set of all possible functions gk for given G̃ we denote as G (G̃):

G (G̃) = {gk : k ∈ F
l
2}.

The legal sender (or the user who has a permission to write symbols of code blocks
into distributed storage) chooses function gk randomly and equiprobably from G (G̃).
With this assumption the legal receiver (the user who has a permission to read data
from distributed storage) is not able to recover m′ uniquely with only one code block c′

because he or she has to know the set of coordinates in DecC̃(c
′) corresponding to

the informational vector (see (6)). The legal receiver should know k for recovering the
informational block. We propose to put the information about vector k into a package
of θ + 1 code blocks, θ ∈ N. Note that it is usual for data storage systems to read and
write data as packages of blocks rather than single blocks.

Let us consider how the legal sender forms t-th package, t ∈ N. The data from the
source are represented as packages of θ blocks. The length of blocks may be different in
different packages. At first, the sender gets vector k(∈ F

l
2) randomly and equiprobably.

This vector is matched with function gk. At the next step the sender represents the data
as a sequence of θ blocks with the length equal to w(k) so that t-th package Mt of
informational vectors is

Mt = (mt,1, ...,mt,θ), mt,1 ∈ F
w(k)
q .

The corresponding package of code blocks is

Ct = (ct,1, ..., ct,θ, ct,θ+1) (7)

where ct,p = gk(mt,p, rt,p) for p = 1, ..., θ and ct,θ+1 = gk(ut,0), 0 is a zero vector,

w(ut) = w(k). Vector ut is chosen from the set of vectors with weight w(k) (ut ∈ F
w(k)
q )

with probability equal to (q − 1)−w(k) for every vector. Let us denote encoding of Mt as
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Enc(Mt) = Ct. The legal receiver can use the following way for extracting informati-
onal blocks from the packages. He or she should calculate vector k′ = β(DecC̃(c

′
t,θ+1))

and then find m′
t,p = g−1

k′ (c′t,p), p = 1, ..., θ. We denote decoding of package C′
t as

Dec(C′
t) = M′

t = {m′
t,1, ...,m

′
t,θ}. We denote constructed modification of the code noi-

sing method as (G (G̃), θ)-scheme.

For our method the code rate is equal to Rk,θ = θw(k)
(θ+1)n

R for fixed k(∈ F
l
2) where

R = l/n is the code rate for code C̃. As vector k is chosen randomly and equiprobably,
the expected value Rθ of code rate is

Rθ =
∑

k∈Fl

2

θw(k)

(θ + 1)n2l
R =

θ

(θ + 1)n2l

∑

k∈Fl

2

w(k)R =
θ

2(θ + 1)
R (8)

as
∑

k∈Fl

2
w(k) = n2l−1. Note that limθ→∞ Rθ = 0, 5R.

Let us denote the set G (G̃)h1,h2 = {gk : h1 6 w(k) 6 h2} for h1, h2 ∈ {0, ..., l},
h2 > h1. One may use this set if it is necessary to increase the code rate Rθ, for
example. Note that G (G̃) = G (G̃)0,l. In the next section the (G (G̃), θ)-scheme is analyzed
for resistance against failure of n− ν repositories and coalition of µ participants (recall
that here the length n of code block is equal to the number of repositories). It is easy
to generalize the results represented in the next section if (G (G̃)h1,h2 , θ)-scheme is used

instead of G (G̃).

2. ANALYSIS AND APPLICATION OF (G (G̃), θ)-SCHEME

2.1. Defense against unreliable nodes

Theorem 1. Let C̃ be a [n, l, d̃]-code generating matrix G̃, and package

Ct = Enc(Mt) be an output of (G (G̃), θ)-scheme using function gk, C
′
t = (c′t,1, ..., c

′
t,θ+1)

is the corresponding package of partially erased code blocks. If every block c′t,p,

p = 1, ..., θ + 1 has no more than d̃− 1 erasures, then Dec(C′
t) = Mt.

Proof. By condition, d̃ is code distance of code C and there are no more than d̃− 1
erasures in every code block. Then β(DecC̃(c

′
t,θ+1)) = k. According to condition of the

theorem, g−1
k (c′t,p) = mt,p for p = 1, ..., θ. �

Theorem 1 allows us to get limit on number n − ν of unreliable nodes when these
nodes may be inaccessible but (G (G̃), θ)-scheme provides the recovery of information.

Exactly, n− ν 6 d̃− 1 where d̃ is the code distance of C̃.

2.2. Defense against coalition of untrusted nodes

If the coalition (or eavesdropper) knows function gk then the resistance of the
modified code noising method does not exceed the resistance of classical code noising
based on the pair (C̃,L (Gk)) where L (A) is a linear subspace with rows of matrix A
as its basis. In other words if adversary knows k he or she will be able to attack with
all known ways, e.g. attack on repetitive messages. Further we presume that the next
hypothesis is right.

Hypothesis 1. If someone wants to get any information about data in package (7)
he or she should obtain information about function gk which was used while package

encoding.

➮=>?@ABCDEB ✸✸✶



➮!"✳ $%&%'✳ ()✲'%✳ ❮,"✳ -.&✳ $.&✳ ❒%'.0%'12%✳ ❒.3%)12%✳ ➮)4,&0%'12%✳ ✷✵✶✾✳ 9✳ ✶✾✱ ";<✳ ✸

Let K be a vector chosen randomly and equiprobably from F
l
2, U be a random vector

with distribution

pU(u) =
1

2l(q − 1)w(u)
(9)

on F
l
q. Obviously, random vectors K and β(U) have the same distributions. Let us

consider for a fixed k the random vector

Ck = gk(M
(w(k)), R(l−w(k))),

where M (w(k)) and R(l−w(k)) are random vectors distributed uniformly over F
w(k)
q and

F
l−w(k)
q respectively. Note that random vector Ck has uniform distribution over C̃ for

any k. Let H(K) and H(K|Ck) be an entropy of a random vector K and conditional
entropy of a random vector K on condition Ck respectively:

H(K) = −
∑

χ∈Fl

2

pK(χ) log2(pK(χ)) = l,

H(K|Ck) = −
∑

χ∈Fl

2

∑

c∈C̃

p(K,Ck)(χ, c) log2(pK|Ck(χ|c)).

If Ck = c(∈ C̃), there is no way to choose a correct function from G (G̃) using
only decoded value DecC̃(c) because vectors M (w(k)), R(l−w(k)), and K are distributed
uniformly. Thus H(K|Ck) = l and the mutual information I(K;Ck) is equal to zero:

I(K;Ck) = H(K)− H(K|Ck) = 0.

Moreover, it is not hard to check that I(K; (Ck
1 , ..., C

k
θ )) = 0 for θ copies Ck

1 , ..., C
k
θ

of a random vector Ck.
Let us consider the random vectors C1,...,Cθ, X = UG̃, Cp = C

β(u)
p if U = u,

p = 1, ..., θ, where U is a random vector with distribution (9). Let τ(⊆ n) be a set of
observed coordinates (or the numbers of repositories from the coalition) with cardinality
|τ | = µ and Z1,...,Zθ, Y be random vectors, Zp = Πτ (Cp), p = 1, ..., θ, Y = Πτ (X). It is
not hard to check the next chain of equalities:

Pr{β(U)=k|Z1 = z1, ..., Zθ = zθ, Y = y}=
Pr{β(U) = k, Z1 = z1, ..., Zθ = zθ, Y = y}

Pr{Z1 = z1, ..., Zθ = zθ, Y = y}
=

=
Pr{β(U) = k, Z1 = z1, ..., Zθ = zθ}Pr{Y = y|β(U) = k, Z1 = z1, ..., Zθ = zθ}

Pr{Z1 = z1, ..., Zθ = zθ, Y = y}
=

=
Pr{β(U) = k}Pr{Z1=z1, ..., Zθ=zθ|β(U) = k}Pr{Y = y|β(U) = k, Z1 = z1, ..., Zθ = zθ}

Pr{Z1 = z1, ..., Zθ = zθ}Pr{Y = y|Z1 = z1, ..., Zθ = zθ}
=

=
Pr{β(U) = k}Pr{Y = y|β(U) = k}

Pr{Y = y}
= Pr{β(U) = k|Y = y} = Pr{K = k|Y = y},

for every k ∈ F
k
2, z1,..., zθ, y ∈ Πτ (C̃). Thus, H(K|Z1, ..., Zθ, Y ) = H(K|Y ) and

I(K; (Z1, ..., Zθ, Y )) = H(K)− H(K|Y ) = I(K;Y ) = l − H(K|Y ), (10)

because K is equiprobable. For every k ∈ F
l
2 we denote B(k) = {u ∈ F

l
q : β(u) = k}.

Let n ∈ N, τ ⊆ n, y be the implementation of a random vector Y = Πτ (X). Consider
the the system of equations

uΠτ (G̃) = y (11)

where u is unknown. The set of solutions of this system denote Γ(y).
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Lemma 1. Let β̂(Γ(y)) = {β(g) : g ∈ Γ(y)}. Then

H(K|Y = y) 6 log2 |β̂(Γ(y))| 6 min{(l − rank(Πτ (G̃))) log2 q; l}.

Proof. Note that pU |Y (u|y) = 0 if u /∈ Γ(y). Then

pK|Y (k|y) =
∑

u∈B(k)

pU |Y (u|y) =

=
∑

u∈B(k)∩Γ(y)

pU(u)∑
u′∈Γ(y) pU(u

′)
=

∑
u∈B(k)∩Γ(y) 2

−l(q − 1)−w(u)

∑
u′∈Γ(y) 2

−l(q − 1)−w(u′)
=

=

∑
u∈B(k)∩Γ(y)(q − 1)−w(k)

∑
u∈Γ(y)(q − 1)−w(u)

=
|B(k) ∩ Γ(y)|∑

u∈Γ(y)(q − 1)w(k)−w(u)
. (12)

It is obvious that

pK|Y (k|y) 6= 0 ⇔ B(k) ∩ Γ(y) 6= ∅ ⇔ k ∈ β̂(Γ(y)),

then

H(K|Y = y) = −
∑

k∈β̂(Γ(y))

pK|Y (k|y) log2(pK|Y (k|y)) =

= −
∑

k∈β̂(Γ(y))

|B(k) ∩ Γ(y)|∑
u∈Γ(y)(q − 1)w(k)−w(u)

log2(
|B(k) ∩ Γ(y)|∑

u∈Γ(y)(q − 1)w(k)−w(u)
) 6 log2 |β̂(Γ(y))|,

because log2 |β̂(Γ(y))| is the entropy of uniformly distributed K for a given y. Estimate
of log2 |β̂(Γ(y))| is also right because there are only 2l possible variants of vector

k(∈ F
l
2), on the one hand, and equation (11) has ql−rank(Πτ (G̃)) solutions, on the other

hand. �

Let B(k,y) = B(k)∩Γ(y) and for i ∈ {0, ..., l} define Ai(Γ(y)) =
∑

u∈Γ(y)(q−1)i−w(u).

Then from (12) we get pK|Y (k|y) =
|B(k,y)|

Aw(k)(Γ(y))
,

H(K|Y = y) = −
∑

k∈Fl

2

pK|Y (k|y) log2 pK|Y (k|y) = −
∑

k∈Fl

2

|B(k,y)|

Aw(k)(Γ(y))
log2

(
|B(k,y)|

Aw(k)(Γ(y))

)
=

= −
l∑

i=0

1

Ai(Γ(y))

∑

k∈Fl

2:w(k)=i

|B(k,y)| log2

(
|B(k,y)|

Ai(Γ(y))

)
=

= −
l∑

i=0

1

Ai(Γ(y))


 ∑

k∈Fl

2:w(k)=i

|B(k,y)| (log2 (|B(k,y)|)− log2 (Ai(Γ(y))))


 =

= −
l∑

i=0

1

Ai(Γ(y))


 ∑

k∈Fl

2:w(k)=i

|B(k,y)| log2 (|B(k,y)|)−log2 (Ai(Γ(y)))
∑

k∈Fl

2:w(k)=i

|B(k,y)|


 =

= −

l∑

i=0

1

Ai(Γ(y))


 ∑

k∈Fl

2:w(k)=i

|B(k,y)| log2 (|B(k,y)|)−Ni(Γ(y)) log2 (Ai(Γ(y)))


 ,
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where Ni(Γ(y)) = |{u ∈ Γ(y) : w(u) = i}|. Thus, if q 6= 2, then calculation of
H(K|Y = y) and I(K;Y ) seems to be a hard challenge. Because two or more diffe-
rent solutions of the system (11) can correspond to one binary vector k if their supports
are the same. Next theorem calculates I(K;Y ) for q = 2.

Theorem 2. Let q = 2, τ ⊆ n, then I(K;Y ) = rank(Πτ (G̃)) for (G (G̃), θ)-scheme.

Proof. As q = 2 then |B(k)| = 1 and Γ(y) = β̂(Γ(y)), because different binary
vectors have different supports. If y is fixed, then using Lemma 1 for k ∈ Γ(y) we have:

pK|Y (k|y) =
|B(k) ∩ Γ(y)|∑

u∈Γ(y)(2− 1)w(k)−w(u)
=

1

|Γ(y)|
,

H(K|Y = y) = −
∑

k∈Γ(y)

1

|Γ(y)|
log2(

1

|Γ(y)|
) = log2 |Γ(y)|.

As |Γ(y)| = 2l−rank(Πτ (G̃)), then H(K|Y ) = H(K|Y = y) = l − rank(Πτ (G̃)). The last
step is the substitution of the value of H(K|Y ) into (10). �

It follows from (10) and Lemma 1 that obtaining information
I(K; (Z1, ..., Zθ, Y = y)) = I(K;Y = y) is strongly related with constructing

Γ(y) as the set of solutions of the system (11). As |Γ(y)| = ql−rank(Πτ (G̃)), this task can

be challenging in selecting parameters of the scheme. In general, if (G (G̃)h1,h2 , θ) is
used, then

I(K;Y = y) > log2(|G (G̃)h1,h2 |)− log2(β̂(Γ(y)) ∩ {k ∈ F
l
2 : h1 6 w(k) 6 h2}).

The complexity of obtaining this information seems to be equivalent to the complexity
of making the set

β̂(Γ(y)) ∩ {k ∈ F
l
2 : h1 6 w(k) 6 h2}.

To make this set it is necessary either to construct the set Γ(y) or to look over all
possible vectors from F

l
q, then choose vectors with weight in range [h1, h2] only and

check if these vectors are solutions of the system (11). Furthermore, if |G (G̃)h1,h2 | is

small, the eavesdropper is able to check all functions from G (G̃)h1,h2 . Thus, the com-
putational complexity of obtaining information about package of informational blocks

(when Hypothesis 1 is right) is not less than

O

(
min

{
|G (G̃)h1,h2 |, |Γ(y)|

})
, (13)

where O(|G (G̃)h1,h2 |) is the complexity of brute force over all functions from G (G̃)h1,h2

and O(|Γ(y)|) is the complexity of making the set Γ(y).
Note that for q = 2 obtaining full information even about the length of informational

blocks by package (7) is a severe challenge. Consider the general case when G (G̃)h1,h2-
scheme is used. Actually the eavesdropper will get non-zero information about the length
only if there is at least one number l′ ∈ {h1, ..., h2} such that there is not any vector
with weight l′ in Γ(y). The complexity of obtaining information about the length on

conditions µ < l and rank(Πτ (G̃)) = µ may be reduced to one task in the coding theory.

Namely, the matrix Πτ (G̃) may be considered as a transposed parity-check matrix of
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some [l, l − µ]-code. Let vector y, number w ∈ {h1, ..., h2}, and transposed parity-check

matrix Πτ (G̃) be preassigned. The task of finding vector u with weight no more than w

on condition (11) is NP-complete [12]. If (G (G̃)h1,h2 , θ)-scheme is used, then obtaining
non-zero information about the length of message is equivalent to finding out that there
is no vector u with weight exactly w on condition (11). We do not know any polynomial
algorithm for resolving the latter task. Note that in binary case this problem is also
NP-complete [13].

Thus, according to Hypothesis 1 the resistance of the modified code noising method
to known attacks, particularly to the repetitive interception attack, is based on the
fact that it may be difficult (depending on the parameters) for the coalition to obtain
information about the mapping used. It should be noted that to increase resistance to
repetitive interception attack it is also recommended to use small value of the parameter
θ. In this case the probability of the appearance of code blocks, corresponding to one
informational block with the same mapping, is reducing. If θ = 1, then the level of
defense is maximal in this sense, but code rate Rθ = 0, 25 is minimal.

We assume above that number of repositories is equal to the length of code block. It
is practically unreal if length of code block is huge. But proposed (G (G̃), θ)-scheme may
be easily adopted for a smaller number of repositories. If N is the length of code block
and n is the number of repositories (n < N), then we should write no more ⌈N/n⌉ code
symbols into every repository. In this case coalition with µ repositories knows no more
than µ⌈N/n⌉ symbols of every code block, and inaccessibility of n − ν repositories is
equivalent to erasure of (n− ν)⌈N/n⌉ symbols of every code block.

2.3. An example of (G (G̃), θ)-scheme application

Let C̃ be a [255, 200, 56] Reed –Solomon code over F28, q = 28. The table contains

the comparison of characteristics of (G (G̃), θ)-scheme and the classical code noising

method based on pair (C̃, C) if C is [255, 150, 106] Reed –Solomon code. Code rate
of a pair-based code noising method is 50/255 ≈ 0.196 and theoretical-informational
resistance is achieved if coalition knows no more than 150 symbols of code block [1].
For (G (G̃), θ)-scheme code rate is equal to 0.196 if θ = 1 and is about 0.392 if θ > 1000.

Comparison of characteristics of (G (G̃), θ)-scheme

and (C̃, C)-pair

Number of repositories, n 3 5 17

length of a part, ⌈N/n⌉ 85 51 15

max. value n− ν 0 1 3

max. value µ for (G (G̃), θ) 2 3 12

max. value µ for (C̃, C) 1 2 10

Maximal allowable size µ of co-

alition for (G (G̃), θ)-scheme is cal-

culated on condition that complexity

(13) should be not less than 2128; it

corresponds to high level of resis-

tance according to [14]. Note that

estimation (13) for this example ta-

kes the form O(min{2200, |Γ(y)|}).
For any different sets τ1 and τ2
of the same cardinality for generating matrix of Reed –Solomon code we have

rank(Πτ1(G̃)) = rank(Πτ2(G̃)). Then for security reason the allowed maximal number x
of symbols observed by the coalition in each code block can be obtained from inequality

28(200−x) > 2128; so, we have x 6 184. Note that each repository knows only ⌈255
n
⌉ sym-

bols of each code block where n is a number of repositories, n ∈ {3, 5, 17}. As we can

see from the table, the modified method provides defense against a bigger coalition. In

particular, in case of using three repositories the modified code noising method provides
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computational resistance even in the case when two of the three participants have united

in the coalition. At the same time the classical code noising method provides resistance

only in the case of the coalition consisting of one participant.

CONCLUSION

Usually the core of the resistance of modern methods of data confidentiality pro-
tection is a certain mathematical problem with a computationally complex solution if
particular “secret” is unknown. In this paper, a non-cryptographic method for protecting
data confidentiality is constructed based on the use of special data coding and distribu-
tion of parts of the encoded data among the nodes of the distributed storage. In this
case the “secret” is replaced with the assumption that the observer (i.e. node coalition)
cannot get data from all nodes of the distributed storage. The paper shows that the
complexity of recovering the protected data by coalition is not less than the complexity
of solving the theoretical coding problem of finding all weights of vectors with a given
syndrome. The computations lead to the conclusion that the constructed method can
provide protection from coalitions of more cardinality than the classical code noising
method, and provides not less protection from the failure of storage nodes.
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Метод защищенного распределения данных
среди ненадежных и недоверенных узлов

Ю. В. Косолапов, Ф. С. Певнев

Косолапов Юрий Владимирович, кандидат технических наук, доцент, Институт

математики, механики и компьютерных наук имени И. И. Воровича, Южный федеральный

университет, Россия, 344090, г. Ростов-на-Дону, ул. Мильчакова, д. 8a, itaim@mail.ru

Певнев Федор Сергеевич, магистрант, Институт математики, механики и компьютерных

наук имени И. И. Воровича, Южный федеральный университет, Россия, 344090,

г. Ростов-на-Дону, ул. Мильчакова, д. 8a, fes_21@mail.ru

В работе рассматривается модель защиты конфиденциальности и целостности данных

в системе распределенного хранения. Предполагается, что информационные блоки ко-

дируются в кодовые блоки, которые затем разделяются на части и распределяются среди

узлов хранения распределенного хранилища. В качестве способа кодирования построена

модификация метода кодового зашумления, которая одновременно обеспечивает вычис-

лительную стойкость к коалиционным атакам на конфиденциальность хранимых данных,

а также обеспечивает защиту от выхода из строя части узлов хранения. При этом

защита конфиденциальности обеспечивается для коалиций бо́льшей мощности, чем в

случае применения классического метода кодового зашумления. Вычислительная стой-

кость основана на сложности решения одной теоретико-кодовой задачи.

Ключевые слова: канал с перехватом, защищенное распределенное хранилище, коали-

ционные атаки.
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