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The Sturm-—Liouville differential operators on closed sets of the real line are considered. Pro-
perties of their spectral characteristics are obtained and the inverse problem of recovering the
operators from their spectra is studied. An algorithm for the solution of the inverse problem is de-
veloped and the uniqueness of the solution is established. The statement and the study of inverse
spectral problems essentially depend on the structure of the closed set. We consider an important
subclass of closed sets when the set is a unification of a finite number of closed intervals and
isolated points. In order to solve the inverse spectral problem for this class of closed sets, we de-
velop ideas of the method of spectral mappings. We also establish and use connections between
the Weyl-type functions related to different subsets of the main closed set. Using these ideas
and properties we obtain a global constructive procedure for the solution of the nonlinear inverse
problem considered, and we establish the uniqueness of the solution of the inverse problem.
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INTRODUCTION

We study inverse spectral problems for Sturm - Liouville differential operators on
a closed set of the real line (in literature it is sometimes called a time scale). Such
problems often appear in natural sciences and engineering (see monographs [1,2]).

Inverse spectral problems consist in constructing operators with given spectral char-
acteristics. For the classical differential operators on an interval inverse problems have
been studied fairly completely; the main results can be found in [3-15]. However, dif-
ferential operators defined on closed sets are essentially more difficult for investigating,
and nowadays there is no inverse problem theory for this class of operators.

The statement and the study of inverse spectral problems essentially depend on the
structure of the closed set. In this paper we will study inverse problems for an important
subclass of closed sets. We establish properties of spectral characteristics of Sturm -
Liouville operators on closed sets and study the inverse problem of recovering the
potential of the Sturm — Liouville operator from the given two spectra. The main results
of the paper are Theorem 1 and Algorithm 1, where a global constructive procedure for
solving the inverse problem is provided, and the uniqueness of the solution is proved.

Let us recall some notions of the time scale theory; see [1,2] for more details. Let T’
be a closed subset of the real line; it is called sometimes the time scale. We define the
so-called jump functions ¢ and oy on T" as follows:

o(z)=inf{s €T : s> a} for x #supT, and o(supT) = supT;

oo(x) =sup{s € T: s <z} for x #inf T, and oo(inf T') = inf T".

A point z € T is called left-dense, left-isolated, right-dense and right-isolated, if
oo(x) =z, op(z) < x, o(x) =z and o(z) > x, respectively. If o¢(z) < x < o(x), then z
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is called isolated; if og(z) = © = o(z), then x is called dense. A function f on T is
called T-continuous, if it is continuous at all right-dense points and has left-sided limits
at all left-dense points in 7. The set of T-continuous functions is denoted by Cr. Put
T%:=T\ {supT}, if sup T is left-isolated, and 7° := T, otherwise.

A function f on T is called delta-differentiable at z € T°, if for any € > 0 there
exists a neighborhood U = (x — §,2 + §) NT such that

|(f(o(2)) = f(s)) = f2(@)(o(x) = 5)| < elo(z) — 5]
for all s € U. We will call f2(x) the delta-derivative of f at x.
Example 1. If x is a right-isolated point, then

In particular, if T'= {x = hk : k € Z}, then

fla+h) ~ f(2)
FAw) = HEER I

Example 2. 1f x € T is a right-dense point, and f is a delta-differentiable at x, then

fAa) = lim M

S—x, S>x T — S

In particular, if x € T" is a dense point, and f is a delta-differentiable at z, then f is
differentiable at z, and f*(z) = f'(z).

1. DIFFERENTIAL EQUATIONS ON CLOSED SETS

Consider the Sturm - Liouville equation on 7=

— 2% (2) + q(x)y(o(z) = My(o(z)), zeT. (1)

Here ) is the spectral parameter, ¢(z) € Cr is a complex-valued function. A function
y is called a solution of equation (1), if y € C% and satisfies equation (1). The statement
and the study of inverse spectral problems essentially depend on the structure of the
time scale T. It is necessary to choose and describe subclasses of time scales for which
the inverse problem theory can be constructed adequately. In this paper we consider one
of such subclasses, namely, the so-called Y1-structure. More precisely, we consider the
time scale of the form

N
T = U[almbk]u N>27
k=1

bk—l < ag gbk<ak+1, ai <b1, aN<bN, ak:bk, /{ZQ,N—L

For Y1-structure one has

y2 (b)) = y(ars1) — y(br)

, k=1L N-1, y*@x)=9¢(2), z€[a,b]Ulan,by]. (2)
ap4+1 — by

In particular, this yields y®(b;) = ¥/(b1), and consequently,
y(as) = y(b1) + (az — b1)y'(by). (3)
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Using (1) and (2) we obtain

—y"(x) + q(x)y(r) = My(z), € [ar,b1] Ulan, by], (4)
1 Y(ar2) = y(brr1)  ylarr) — y(by)
) = a1 — by ( Upio —bepr g1 — by ) -
= (Q(bk) - /\)y(ak-i-l)a k= 17 N — 27
8(0) = o (i) - LI ) Ay
Therefore

ansa) = ylber) + S22 (o) — y(t) )+
(k1 — bx)(arr2 — bry1)(q(bx) — My(ags1), k=1,N -2, (5)
lan) = LN ZYOND) e Yalbror) — Mylan) ©)

an —by_1

Let \ = p?. It follows from (3) and (5)-(6) that

y(an) = an(p)y(br) + an(p)y' (b1), y'(an) = aa(p)y(br) + axnlp)y'(b),  (7)

where aj;(p) are polynomials with respect to p of degree 2(N + 5 —3), and they depend
on q(by),...,q(bns+j—3). Moreover,

aju(p) = (ip)* VPG [1],  |p| = oo, (8)

where [1] =14+ O(p™),

ofy = (a2 — b1)ady, a9y = (ay —by_1)agy, 0482 = (ag — by)(ay — by—1)af;,

N—
0
oy = (a2 — by)(ay — by—y H a1 — bi)?

(af; =1 for N =2, and af; = (ag — b1)(az — by) for N = 3). Without loss of generality
we assume that a; = 0.

Denote by Lo = Ly(q) the boundary value problem for equation (1) on 7 with
the boundary conditions y(0) = y(by) = 0. Let S(z,A\) and C(x,\) be solutions of
equation (1) on 7' satisfying the initial conditions

C(0,\) = S2(0,\) =1, S(0,)) =C?(0,\) =0.

For each fixed z, the functions S(x,\) and C(z,\) are entire in A of order 1/2.
Denote
Ao()\) = S(bN, )\)

The eigenvalues {\,0},>1 of the boundary value problem Lg coincide with the zeros
of the entire function Ag()\). The function Ag()) is called the characteristic function
for L.
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Let ®(x,\) be the solution of equation (1) on 7" satisfying the boundary conditions

B0,\) =1, &by, \)=0. (9)

Put M()\) := ®*(0, \). The function M ()) is called the Weyl-type function or simply
Weyl function. Clearly,

Oz, \) = C(z,\) + M(N\)S(z, \), (10)
M(A) = =A1(A)/Ao(N), (11)

where A;j(A) := C(by, A) is the characteristic function for the boundary value problem
Ly = Ly(q) for equation (1) on T with the boundary conditions y*(0) = y(by) = 0. The
zeros {A\n1}n>1 of Aj(A) coincide with the eigenvalues of L;.

By the well-known arguments (see, for example [5] we obtain the following fact.

Lemma 1. The specification of the spectra {\,;}n>0, j = 0,1, uniquely determines
the characteristic functions via

A — A
A0 =" (12)
n=0 nj

where {\);}n>0 are eigenvalues of the boundary value problems L := L;(0) with the
zero potential (the case with a zero eigenvalue requires a small modification).

Now we need to study the asymptotical behavior of the solutions ®(z, A) and S(z, A).
For this purpose we extent the function ¢(z) on the whole segment [ai,by] such that
q(z) € Clay,by] and arbitrary in the rest. Consider the Sturm — Liouville equation

— " (x) + q(x)y(z) = My(z), =z €[0,by]. (13)

[t is known (see, for example, [5]) that there exists a fundamental system of solutions
of equation (13) {Yi(z,p),Ya(z,p)}, x € [0,bn], Imp =0, |p| > po, having the following
asymptotical behavior for each fixed = € [0,by] as |p| — oo:

Y (@, p) = (ip)” exp(ipa)[l], Yy"(z,p) = (—ip)’ exp(—ipz)[1], v=0,1.  (14)

The function ®(z, ) is the solution of equation (4) satisfying the boundary condi-
tions (9) and the jump conditions (7), i.e.

P(an, A) = an(p)®(bi, A) + aa(p) (b1, A),

, , 15
¥ ar. ) = aor(p)0(br. ) + () by, ). o
Using the fundamental system of solutions {Yi(x, p), Ya(z, p)}, one has

(I)(:E’)‘) :Al(p)}/l(map)"{'A?(p)Y?(x’p)’ T € [O7b1]7 (16)

O(z,A) = Bi(p)Ya(x, p) + Ba(p)Ya(w,p), € [an, by].

Substituting (16) into (9) and (15) and using (14), we obtain the following linear
algebraic system with respect to Ax(p) and By (p):

A(p)[1] + A2(p)[1] =1, Bi(p) exp(ipbn)[1] + Ba(p) exp(—ipby)[1] =0,
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ipay)[1] =
= ay(p ( p) exp(ipby)[1] + Az(p) exp(—ipby)[1 ])

+ana(p) (A1 (p)(ip) explipby)[1] + Aa(p)(—ip) exp(—ipb)[1]),

Bilp) explipax)[1] + Ba(p) exp(~
)
(~ip)
Bi(p)(ip) explipax)[1] + Ba(p)(=ip) exp(—ipax)[1] =
— az1(p) (A (p) exp(iphy)[1] + Aa(p) exp(—iphy)[1]) +
(~ip)

+aza(p) (A1) (ip) expliphy)[1] + Aa(p)(—ip) exp(=ipbi)[1] ).

Taking (8) into account we deduce that the determinant D(p) of this system has the
form

D(p) = (ip)aza(p)  explin(by — an))[1] = exp(~ip(by — a))[1]) x

X <6Xp(iﬂ(bl —a1))[1] — exp(—ip(b1 — al))[1]>, lpl 00, Imp>0.  (17)

Denote Q5 := {p: argp € [§, 7 — d]}. Solving this algebraic system by Cramer’s rule
and using (17), we get

Ap) = 1], Aa(p) = exp(2ipby)]1]
By(p) = exp(—ip(an — b1))O(p* )[1],
By (p) = exp(—ip(an — b)) exp(2ipby)O(p* ~*)[1].

for |p| = o0, p € Q.
In particular this yields for each fixed = € [0, b,):

CID(”)(x,)\) = (ip)" exp(ipx)[1], v=0,1, |p| —= o0, p€ Q. (18)

Similarly, we obtain

50w3) = =S expipn)t]. v =01, oo peSs (9

for each fixed x € (0,by].

2. SOLUTION OF THE INVERSE PROBLEM

Let the numbers ¢(bs), ..., q(by_1) be known a priori. The inverse problem is formu-
late as follows.

Inverse problem 1. Given two spectra {\,;}n>0, j = 0,1, construct ¢ on 7.

In order to solve this inverse problem we will use the ideas of the method of spectral
mappings [6]. Let us prove the uniqueness theorem for the solution of Inverse problem 1.
For this purpose together with L; we consider boundary value problems E of the same
form but with the other potentlal q. We agree that if a certain symbol 9 denotes an
object related to L, then 6 will denote an analogous object related to Lj;.

Theorem 1. If \,; = ;\nj, n>0,j=0,1, then ¢q = q on T. Thus, the specification
of two spectra {\,;}n>0, 7 = 0,1 uniquely determines the potential q.
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Proof. Using knowledge of two spectra {A;;}nz0, j = 0,1, we construct the Weyl-
type function M(A) via (11) and (12). In particular this yields M (\) = M(A).
For x € (0,b,), we consider the functions

Pi(z,\) = ®(z,\)S" (2, \) — ' (2, \)S(z,\), Pz, \) = Bz, \)S(x,\) — B(z, \)S(x, \).
[t follows from (18)-(19)that for each fixed x € (0, b;),
Pi(z,\) =1+0(p7"), Pz, A)=0(p7"), |p| =00, peQs (20)
On the other hand, using (10) and the relation M(\) = M()), we get

Pi(z,)\) = C(z, )8 (2, \) = C'(x, \)S(z,\), Py(z,\) = C(x,\)S(z, ) — C(z, \)S(x, ),

and consequently, for each fixed x € (0,0;), the functions P, (z, \) and P»(z, \) are entire
in X\ of order 1/2. Together with (20) this yields P;(x,\) = 1 and Py(x,A\) = 0. Since
O(z,N)S" (x,\) — @' (z,\)S(xz, ) =1, it follows that

Py (x, \)®(x, \) 4+ Po(z, )@ (x,\) = &(x, \),
Pi(x,\)S(z,\) + Py(z, 08 (z, \) = S(z, \).

Therefore,

O(x,\) = &?(m, A), (21)

and consequently, ¢(z) = ¢(z) for x € [0,b;]. Using the method of spectral mappings [6]
we also obtain an algorithm for constructing the potential ¢(z) for x € [0, b;].

Denote
O(x, \) ' (an, \)
(I)(CLN,)\)’ CI)((ZN,)\> .
Since ®;(ayn,A) = 1, ®1(by,\) = 0, it follows that the function M;(\) is the Weyl
function for equation (4) on the segment [ay,by]|. Taking (15), (21) and (22) into
account, we infer M;(\) = M;()\). The specification of the Weyl function Mj(\) uniquely
determines the potential ¢(x) for « € [ay,by]. This means that Theorem 1 is proved,
and the solution of Inverse problem 1 can be found by the following algorithm. O

Algorithm. Let two spectra {\,;},>0 j = 0,1, be given.

1. Calculate the Weyl-type function M (X) via (12) and (11).

2. Construct ¢(z) and ®(z,\) for x € [ay,b;] using (18)-(20) and the method of
spectral mappings.

3. Find ®(an, A) and ®'(an, A) via (15).

4. Calculate M;()) by (22).

5. Construct ¢(z) and ®(x,\) for = € [an, by] by the method of spectral mappings.

(I)l(l',)\) = M1(>\) = (I)ll(CLN,)\) = (22)
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YK 517.984

O BoccTaHoBeHUU auddpepeHUanbHbIX ornepaTropos
Ha 3aMKHYTOM MHOXXeCTBe Mo crneKkTpam
B. A. FOpko

Marematrka

lOpko Bsayecnas AHaTonbeBMY, DOKTOP (PU3NKO-MATEMATMYECKMX HayK, 3aBeaylowuin kadgea-
POl MaTeMatnyeckon sk u BblYUCANTENbHOM MaTeMaTnky, CapaTtoBCKUA HALLMOHAMbHBIA
nccnepoBaTenbCKUA rocynapcTBeHHbI yHuBepcuteT nmeHn H. I'. YepHbiwesckoro, Poccus,
410012, r. Capartos, yn. AcTpaxaHckas, g. 83, YurkoVA@info.sgu.ru

PaccmatpuBaioTtcs  nugpdpepeHumansbHble onepatopbl WTypma—JlnyBunns Ha 3aMKHYTbIX
MHOXECTBAX BeWECTBEHHON ocu. lMonyyeHbl CBOMCTBA UX CMEKTPANbHbIX XapakTepUcTuk U
nccnepyetcs obpatHas 3amadva BOCCTAHOB/IEHWS OMepaTopoB Mo WX crekTpaM. PaspaboTaH
anropuTM peleHns 0bpaTHo 3a8ayn 1 yCTaHOBNEHA eMHCTBEHHOCTb €€ pelueHus. [ocTaHoB-
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Ka 1M uccnenoBaHne o6paTHbIX 3afjady CyWeCTBEHHO 3aBUCAT OT CTPYKTYpbl 3aMKHYTOro
MHOXecTBa. PaccMatpmBaeTcsl BaXHbll KNacC 3aMKHYTbIX MHOXECTB, KOrga MHOXECTBO $1B-
nsetcs 06 beaUHEHMEM KOHEYHOMO Habopa 0TPE3KOB 1 M30IMPOBAHHBIX TOYeK. [1ns Toro, 4Tobbl
pewnTb obpaTHyo 3adady ANs 3TOro kfacca 3aMKHYTbIX MHOXECTB, AAeTCcsl pa3BuTue uaen
MeToda CrnekTpasbHbix 0TOBpaxeHuid. Takxe YCTaHOBNEHbl M WCMOMb3YIOTCS CBA3WM MeXnay
yHKUMaMKM Tuna Benngs, oTHocAwmMecs K pasHblM NMOOAMHOXECTBAM OCHOBHOIMO 3aMKHYTOro
MHOXecTBa. C NOMOLWbIO 3TUX MAEW U CBOMUCTB nonydeHa rnobanbHasi KOHCTPYKTMBHAS Mpo-
Luelypa pelleHns paccMaTpuMBaeMoil HENUHEeHoW obpaTHOW 3amayn, a Takxe YCTaHOB/eHa
€0VHCTBEHHOCTb pPelleHns 3Ton 0bpaTHOR 3aaayn.

Knroyesble cnosa: nndpdepeHumanbHble onepatopbl, 3aMKHY Tble MHOXECTBa, obpaTHas cnek-
TpanbHas 3agava.
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