

Asymptotics of Solutions of Some Integral Equations Connected with Differential Systems with a Singularity

M. Yu. Ignatiev

Mikhail Yu. Ignatiev, https://orcid.org/0000-0002-4354-9197, Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia, mikkieram@gmail.com, ignatievmu@info.sgu.ru

Our studies concern some aspects of scattering theory of the singular differential systems $y'-x^{-1}Ay-q(x)y=\rho By,\ x>0$ with $n\times n$ matrices $A,B,q(x),x\in(0,\infty)$, where A,B are constant and ρ is a spectral parameter. We concentrate on investigation of certain Volterra integral equations with respect to tensor-valued functions. The solutions of these integral equations play a central role in construction of the so-called Weyl-type solutions for the original differential system. Actually, the integral equations provide a method for investigation of the analytical and asymptotical properties of the Weyl-type solutions while the classical methods fail because of the presence of the singularity. In the paper, we consider the important special case when q is smooth and q(0)=0 and obtain the classical-type asymptotical expansions for the solutions of the considered integral equations as $\rho\to\infty$ with $o\left(\rho^{-1}\right)$ rate remainder estimate. The result allows one to obtain analogous asymptotics for the Weyl-type solutions that play in turn an important role in the inverse scattering theory.

Keywords: differential systems, singularity, integral equations, asymptotical expansions.

Received: 26.06.2019 / Accepted: 01.07.2019 / Published: 02.03.2020

This is an open access article distributed under the terms of Creative Commons Attribution License (CC-BY 4.0)

DOI: https://doi.org/10.18500/1816-9791-2020-20-1-17-28

INTRODUCTION

Our studies concern some aspects of scattering theory of the differential systems

$$y' - x^{-1}Ay - q(x)y = \rho By, \quad x > 0$$
 (1)

with $n \times n$ matrices $A, B, q(x), x \in (0, \infty)$, where A, B are constant and ρ is a spectral parameter.

Differential equations with coefficients having non-integrable singularities at the end or inside the interval often appear in various areas of natural sciences and engineering. For n=2, there exists an extensive literature devoted to different aspects of spectral theory of the radial Dirac operators, see, for instance [1-5].

Systems of the form (1) with n>2 and arbitrary complex eigenvalues of the matrix B appear to be considerably more difficult for investigation even in the "regular" case A=0 [6]. Some difficulties of principal matter also appear due to the presence of the singularity. Whereas the "regular" case A=0 has been studied fairly completely to date [6–8], for the system (1) with $A\neq 0$ there are no similar general results.

The important role in scattering theory is played by a certain distinguished basis of generalized eigenfunctions for (1) (the so-called *Weyl-type solutions*, see, for instance [9]). In the presence of the singularity construction and investigation of this basis encounters some difficulties which do not appear in the "regular" case A=0. In particular, one can not use the auxiliary Cauchy problems with the initial conditions

at x=0. The approach presented in [10] (see also [11] and references therein) for the scalar differential operators

$$\ell y = y^{(n)} + \sum_{j=0}^{n-2} \left(\frac{\nu_j}{x^{n-j}} + q_j(x) \right) y^{(j)}$$
 (2)

is based on using some special solutions of the equation $\ell y = \lambda y$ that also satisfy certain Volterra integral equations. This approach assumes some additional decay condition for the coefficients $q_j(x)$ as $x \to 0$, moreover, the required decay rate depends on eigenvalues of the matrix A. In this paper, we do not impose any additional restrictions of such a type. Instead, we use a modification of the approach first presented in [12] for the higher-order differential operators with regular coefficients on the whole line and recently adapted for differential systems of the form (1) on the semi-axis in [9].

In brief outline the approach can be described as follows. We consider some auxiliary systems with respect to the functions with values in the exterior algebra $\wedge \mathbb{C}^n$. Our study of these auxiliary systems centers on two families of their solutions that also satisfy some asymptotical conditions as $x \to 0$ and $x \to \infty$ respectively, and can be constructed as solutions of certain *Volterra* integral equations. As in [12] we call these distinguished tensor solutions the *fundamental tensors*. The main difference from the above-mentioned method used in [10] is that we use the integral equations to construct the fundamental tensors rather than the solutions for the original system. Since each of the fundamental tensors has minimal growth (as $x \to 0$ or $x \to \infty$) among solutions of the same auxiliary system, this step does not require any decay of g(x) as $x \to 0$.

Construction and properties of the fundamental tensors were considered in details in our paper [9] provided that $q(\cdot)$ is absolutely continuous and both q,q' are integrable on the semi-axis $(0,\infty)$. In this paper, we consider the important special case q(0)=0 and obtain the classical-type asymptotical expansions for the fundamental tensors as $\rho\to\infty$ with $o(\rho^{-1})$ rate remainder estimate.

ASSUMPTIONS AND NOTATIONS. FORMULATIONS OF THE RESULTS

We are to discuss first the unperturbed system:

$$y' - x^{-1}Ay = \rho By \tag{3}$$

and its particular case corresponding to the value $\rho = 1$ of the spectral parameter

$$y' - x^{-1}Ay = By (4)$$

but to complex (in general) values of x.

Assumption 1. Matrix A is off-diagonal. The eigenvalues $\{\mu_j\}_{j=1}^n$ of the matrix A are distinct and such that $\mu_j - \mu_k \notin \mathbb{Z}$ for $j \neq k$, moreover, $\operatorname{Re}\mu_1 < \operatorname{Re}\mu_2 < \cdots < \operatorname{Re}\mu_n$, $\operatorname{Re}\mu_k \neq 0$, $k = \overline{1, n}$.

Assumption 2. $B = \text{diag}(b_1, \dots, b_n)$, the entries b_1, \dots, b_n are nonzero distinct points on the complex plane such that $\sum_{j=1}^{n} b_j = 0$ and such that any 3 points are noncolinear.

Under Assumption 1 system (4) has the fundamental matrix $c(x) = (c_1(x), \dots, c_n(x))$, where

$$c_k(x) = x^{\mu_k} \hat{c}_k(x),$$

 $\det c(x) \equiv 1$ and all $\hat{c}_k(\cdot)$ are entire functions, $\hat{c}_k(0) = \mathfrak{h}_k$, \mathfrak{h}_k is an eigenvector of the matrix A corresponding to the eigenvalue μ_k . We define $C_k(x,\rho) := c_k(\rho x)$, $x \in (0,\infty)$,

 $\rho \in \mathbb{C}$. We note that the matrix $C(x, \rho)$ is a solution of the unperturbed system (3) (with respect to x for the given spectral parameter ρ).

Let Σ be the following union of lines through the origin in \mathbb{C} :

$$\Sigma = \bigcup_{(k,j): j \neq k} \left\{ z : \operatorname{Re}(zb_j) = \operatorname{Re}(zb_k) \right\}.$$

By virtue of Assumption 2 for any $z \in \mathbb{C} \setminus \Sigma$ there exists the ordering R_1, \ldots, R_n of the numbers b_1, \ldots, b_n such that $\operatorname{Re}(R_1z) < \operatorname{Re}(R_2z) \cdots < \operatorname{Re}(R_nz)$. Let $\mathscr S$ be a sector $\{z = r \exp(i\gamma), r \in (0, \infty), \gamma \in (\gamma_1, \gamma_2)\}$ lying in $\mathbb{C} \setminus \Sigma$. Then [13] the system (4) has the fundamental matrix $e(x) = (e_1(x), \ldots, e_n(x))$ which is analytic in $\mathscr S$, continuous in $\overline{\mathscr S} \setminus \{0\}$ and admits the asymptotics:

$$e_k(x) = e^{xR_k}(\mathfrak{f}_k + x^{-1}\eta_k(x)), \quad \eta_k(x) = O(1), \quad x \to \infty, \quad x \in \overline{\mathscr{S}},$$

where $(\mathfrak{f}_1,\ldots,\mathfrak{f}_n)=\mathfrak{f}$ is a permutation matrix such that $(R_1,\ldots,R_n)=(b_1,\ldots,b_n)\mathfrak{f}$. We define $E(x,\rho):=e(\rho x)$.

Everywhere below we assume that the following additional condition is satisfied.

Condition 1. For all $k = \overline{2, n}$ the numbers

$$\Delta_k^0 := \det(e_1(x), \dots, e_{k-1}(x), c_k(x), \dots, c_n(x))$$

are not equal to 0.

Under Condition 1 the system (4) has the fundamental matrix $\psi^0(x)=(\psi^0_1(x),\dots,\psi^0_n(x))$ which is analytic in $\mathscr S,$ continuous in $\overline{\mathscr S}\setminus\{0\}$ and admits the asymptotics:

$$\psi_k^0(xt) = \exp(xtR_k)(\mathfrak{f}_k + o(1)), \quad t \to \infty, \quad x \in \mathscr{S}, \quad \psi_k^0(x) = O(x^{\mu_k}), \quad x \to 0.$$

We define $\Psi^0(x,\rho) := \psi^0(\rho x)$. As above, we note that the matrices $E(x,\rho)$, $\Psi^0(x,\rho)$ solve (3).

In the sequel we use the following notations:

- $-\{\mathfrak{e}_k\}_{k=1}^n$ is the standard basis in \mathbb{C}^n ;
- $-\mathscr{A}_m$ is the set of all ordered multi-indices $\alpha=(\alpha_1,\ldots,\alpha_m),\ \alpha_1<\alpha_2<\cdots<\alpha_m,$ $\alpha_j\in\{1,2,\ldots,n\};$
- for a sequence $\{u_j\}$ of vectors and a multi-index $\alpha=(\alpha_1,\ldots,\alpha_m)$ we define $u_\alpha:=u_{\alpha_1}\wedge\cdots\wedge u_{\alpha_m}$;
 - for a numerical sequence $\{a_j\}$ and a multi-index lpha we define $a_lpha:=\sum_{j\inlpha}a_j,$

$$a^{\alpha} := \prod_{j \in \alpha} a_j;$$

- for a multi-index α the symbol α' denotes the ordered multi-index that complements α to $(1,2,\ldots,n)$;
 - for $k = \overline{1, n}$ we denote

$$\overrightarrow{a}_k := \sum_{j=1}^k a_j, \quad \overleftarrow{a}_k := \sum_{j=k}^n a_j, \quad \overrightarrow{a}^k := \prod_{j=1}^k a_j, \quad \overleftarrow{a}^k := \prod_{j=k}^n a_j.$$

We note that Assumptions 1, 2 imply, in particular, $\sum\limits_{k=1}^n \mu_k = \sum\limits_{k=1}^n R_k = 0$ and therefore for any multi-index α one has $R_{\alpha'} = -R_{\alpha}$ and $\mu_{\alpha'} = -\mu_{\alpha}$;

- the symbol $V^{(m)}$, where V is $n \times n$ matrix, denotes the operator acting in $\wedge^m \mathbb{C}^n$ so that for any vectors u_1, \ldots, u_m the following identity holds:

$$V^{(m)}(u_1 \wedge u_2 \wedge \cdots \wedge u_m) = \sum_{j=1}^m u_1 \wedge u_2 \wedge \cdots \wedge u_{j-1} \wedge Vu_j \wedge u_{j+1} \wedge \cdots \wedge u_m;$$

- if $h \in \wedge^n \mathbb{C}^n$ then |h| is a number such that $h = |h|\mathfrak{e}_1 \wedge \mathfrak{e}_2 \wedge \cdots \wedge \mathfrak{e}_n$; for $h \in \wedge^m \mathbb{C}^n$ we set $||h|| := \sum_{\alpha \in \mathscr{A}_m} |h_\alpha|$, where $\{h_\alpha\}$ are the coefficients from the

expansion $h = \sum_{\alpha \in \mathscr{A}_m} h_{\alpha} \mathfrak{e}_{\alpha}$.

We use the same notation $L_p(a,b)$ for all the spaces of the form $L_p((a,b),\mathscr{E})$, where \mathscr{E} is a finite-dimensional space. The notation C[a,b] for the spaces of continuous functions will be used in a similar way.

Everywhere below the symbol $\mathscr S$ denotes some (arbitrary) open sector with the vertex at the origin lying in $\mathbb{C} \setminus \Sigma$.

For each fixed $\rho \in \overline{\mathscr{S}} \setminus \{0\} =: \mathscr{S}'$ we consider the following Volterra integral equations $(k = \overline{1, n})$:

$$Y(x) = T_k^0(x, \rho) + \int_0^x G_{n-k+1}(x, t, \rho) \left(q^{(n-k+1)}(t) Y(t) \right) dt,$$
 (5)

$$Y(x) = F_k^0(x, \rho) - \int_x^\infty G_k(x, t, \rho) \left(q^{(k)}(t) Y(t) \right) dt, \tag{6}$$

where

$$T_k^0(x,\rho) := C_k(x,\rho) \wedge \dots \wedge C_n(x,\rho), \tag{7}$$

$$F_k^0(x,\rho) := E_1(x,\rho) \wedge \dots \wedge E_k(x,\rho) = \Psi_1^0(x,\rho) \wedge \dots \wedge \Psi_k^0(x,\rho)$$
(8)

and $G_m(x,t,\rho)$ is an operator acting in $\wedge^m \mathbb{C}^n$ as follows:

$$G_m(x,t,\rho)f = \sum_{\alpha \in \mathscr{A}_m} \sigma_\alpha |f \wedge C_{\alpha'}(t,\rho)| C_{\alpha}(x,\rho). \tag{9}$$

Here and below $\sigma_{\alpha} := |\mathfrak{h}_{\alpha} \wedge \mathfrak{h}_{\alpha'}|$.

For any $\rho \in \mathscr{S}'$ equations (5) and (6) were shown to have the unique solutions $T_k(x,\rho)$ and $F_k(x,\rho)$ respectively such that (see [9] for details):

$$||T_k(x,\rho)|| \leq M \begin{cases} \left| (\rho x)^{\overleftarrow{\mu}_k} \right|, & |\rho x| \leq 1, \\ \left| \exp(\rho x \overleftarrow{R}_k) \right|, & |\rho x| > 1, \end{cases}$$

$$||F_k(x,\rho)|| \leq M \begin{cases} \left| (\rho x)^{\overrightarrow{\mu}_k} \right|, & |\rho x| \leq 1, \\ \left| \exp(\rho x \overrightarrow{R}_k) \right|, & |\rho x| > 1. \end{cases}$$

We call the functions $F_k(x,\rho)$, $T_k(x,\rho)$ the fundamental tensors. Note that the fundamental tensors solve the auxiliary systems

$$Y' = Q^{(m)}(x, \rho)Y, \quad Q(x, \rho) := x^{-1}A + \rho B + q(x)$$
(10)

with m = k and m = n - k + 1.

We note that the tensors $\{E_{\alpha}(x,\rho)\}_{\alpha\in\mathscr{A}_m}$ form the fundamental system of solutions for the system (10) in the "unperturbed" case. Therefore, the following representation holds:

$$T_k^0(x,\rho) = \sum_{\alpha \in \mathscr{A}_{n-k+1}} T_{k\alpha}^0 E_\alpha(x,\rho)$$
(11)

with x-independent coefficients $T^0_{k\alpha}$. Taking into account the special construction of the fundamental matrices $C(x,\rho)$, $E(x,\rho)$ one can conclude that the coefficients $T^0_{k\alpha}$ do not depend on ρ as well.

The $G_m(x, t, \rho)$ terms in equations (5), (6) are actually the Green operator functions for the nonhomogeneous systems:

$$Y' = Q^{(m)}(x, \rho)Y + f(x).$$

In order to construct them one can use variuos fundamental systems of solutions of the unperturbed system (3). In particular the following representations hold:

$$G_m(x,t,\rho)f = \sum_{\alpha \in \mathscr{A}_m} \chi_\alpha \left| f \wedge \Psi_{\alpha'}^0(t,\rho) \right| \Psi_{\alpha}^0(x,\rho) = \sum_{\alpha \in \mathscr{A}_m} \chi_\alpha \left| f \wedge E_{\alpha'}(t,\rho) \right| E_{\alpha}(x,\rho). \tag{12}$$

Here and below $\chi_{\alpha} := |\mathfrak{f}_{\alpha} \wedge \mathfrak{f}_{\alpha'}|$.

In the paper, we study the asymptotical behavior of the fundamental tensors for $\rho \to \infty$. In [9] the following expansions were obtained:

$$T_k(x,\rho) = T_k^0(x,\rho) + O\left(\rho^{-\varepsilon} \exp\left(\rho x \overleftarrow{R}_k\right)\right), \quad \varepsilon \in (0,1),$$
$$F_k(x,\rho) = F_k^0(x,\rho) + O\left(\rho^{-1} \exp\left(\rho x \overrightarrow{R}_k\right)\right)$$

for any fixed $x\in(0,\infty)$ and $\rho\to\infty,\ \rho\in\mathscr{S}'.$ We show that under the additional condition q(0)=0 more detailed expansion can be obtained.

Let $W_0(\xi)$ be the function defined as follows:

$$W_0(\xi) = (1 - |\xi|)\xi + |\xi|^2, \quad |\xi| \le 1, \quad W_0(\xi) := (W_0(\xi^{-1}))^{-1}, \quad |\xi| > 1.$$

Notice that $W_0(\xi)$ is continuous in $\xi \in \mathbb{C}$, never vanishes for nonzero ξ and admits the estimate:

$$M_1|\xi| \leqslant |W_0(\xi)| \leqslant M_2|\xi|$$

for all $\xi \in \mathbb{C}$. Moreover, we have $W_0(\xi) = 1$ if $|\xi| = 1$ and the asymptotics $W_0(\xi) = \xi(1+o(1))$ hold as $\xi \to 0$ and $\xi \to \infty$.

We introduce the following weight functions:

$$W_k(\xi) := \begin{cases} W_0(\xi^{\mu_k}) \exp(R_k \xi), & |\xi| \leq 1, \\ \exp(R_k \xi), & |\xi| > 1. \end{cases}$$

From the definition and the above-mentioned properties of $W_0(\cdot)$ it follows that the weight functions $W_k(\cdot), k = \overline{1,n}$ are all continuous in \mathscr{S}' , never vanish and admit the asymptotics $W_k(\xi) = \xi^{\mu_k}(1 + o(1))$ as $\xi \to 0$. We define

$$\tilde{F}_k(x,\rho) := (\overrightarrow{W}^k(\rho x))^{-1} F_k(x,\rho), \quad \tilde{T}_k(x,\rho) := (\overleftarrow{W}^k(\rho x))^{-1} T_k(x,\rho).$$

Theorem 1. Suppose that $q(\cdot)$ is an absolutely continuous off-diagonal matrix function such that q(0) = 0. Denote by $\hat{q}_o(\cdot)$ the off-diagonal matrix function such that $[B,\hat{q}_o(x)] = -q(x)$ for all x > 0 (here $[\cdot,\cdot]$ denotes the matrix commutator). Define the diagonal matrix $d(x) = \operatorname{diag}(d_1(x), \ldots, d_n(x))$, where

$$d_k(x) := \int_{x}^{\infty} t^{-1} ([\hat{q}_o(t), A])_{kk} dt$$

and set $\hat{q}(x) := \hat{q}_{o}(x) + d(x)$.

functions $q_{ij}(\cdot), q'_{ij}(\cdot)$ and $\tilde{q}_{ij}(\cdot)$, the $\tilde{q}(x) := \hat{q}'(x) + x^{-1}[\hat{q}(x), A]$ are from $X_p := L_1(0, \infty) \cap L_p(0, \infty)$, p > 2. Then for each fixed x > 0 and $\rho \to \infty$, $\rho \in \mathscr{S}'$ the following asymptotics hold:

$$\rho(\tilde{T}_k(x,\rho) - \tilde{T}_k^0(x,\rho)) = d_{0k}\tilde{T}_k^0(x,\rho) + \sum_{\alpha,\beta \in \mathscr{A}_{n-k+1}} T_{k\beta}^0 g_{k\alpha\beta}(x) \exp(\rho x (R_\beta - \overleftarrow{R}_k)) \mathfrak{f}_\alpha + o(1),$$

$$\rho\left(\tilde{F}_k(x,\rho) - \tilde{F}_k^0(x,\rho)\right) = \sum_{\alpha \in \mathscr{A}_k} f_{k\alpha}(x)\mathfrak{f}_\alpha + o(1).$$

Here

$$d_{0k} = -\sigma_{\alpha^*(k)} \left| \left(d^{(n-k+1)}(0) \mathfrak{h}_{\alpha^*(k)} \right) \wedge \mathfrak{h}_{(\alpha^*(k))'} \right|,$$

 $\alpha^*(k) := (k, \ldots, n)$ and the coefficients in the representations are defined as follows:

$$f_{k\alpha}(x) = \chi_{\alpha} \left| \left(\hat{q}^{(k)}(x) \mathfrak{f}_{\alpha_*(k)} \right) \wedge \mathfrak{f}_{\alpha'} \right|$$

for $\alpha \neq \alpha_*(k) := (1, ..., k)$,

$$f_{k,\alpha_{*}(k)}(x) = -\sum_{\alpha \in \mathscr{A}_{k}} \int_{x}^{\infty} \chi_{\alpha_{*}(k)} \left| \left(q^{(k)}(t) \mathfrak{f}_{\alpha} \right) \wedge \mathfrak{f}_{\alpha'_{*}(k)} \right| \chi_{\alpha} \left| \left(\hat{q}^{(k)}(t) \mathfrak{f}_{\alpha_{*}(k)} \right) \wedge \mathfrak{f}_{\alpha'} \right| dt;$$
$$q_{k\alpha\beta}(x) = \chi_{\alpha} \left| \left(\hat{q}^{(n-k+1)}(x) \mathfrak{f}_{\beta} \right) \wedge \mathfrak{f}_{\alpha'} \right|$$

for $\beta \neq \alpha$,

$$g_{k\beta\beta}(x) = \sum_{\alpha \in \mathscr{A}_{n-k+1}} \int_{0}^{x} \chi_{\beta} \left| \left(q^{(n-k+1)}(t) \mathfrak{f}_{\alpha} \right) \wedge \mathfrak{f}_{\beta'} \right| \chi_{\alpha} \left| \left(\hat{q}^{(n-k+1)}(t) \mathfrak{f}_{\beta} \right) \wedge \mathfrak{f}_{\alpha'} \right| dt.$$

PROOF OF THEOREM 1

We consider in details the function $T_k(x,\rho)$, for the function $F_k(x,\rho)$ similar arguments are valid.

For the function $\hat{T}_k(x,\rho) := \tilde{T}_k(x,\rho) - \tilde{T}_k^0(x,\rho)$ we have the representation $\hat{T}_k(\cdot,\rho)=(Id-\mathcal{K}(\rho))^{-1}v_k(\cdot,\rho)$, where $\mathcal{K}(\rho)$ is an operator of the form:

$$\left(\mathcal{K}(\rho)f\right)(x) := \int_{0}^{x} \mathcal{G}_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t)f(t)\right) dt$$

acting in $L_{\infty}(0,T)$, $T \in (0,\infty)$ is arbitrary. Here and below

$$\mathscr{G}_{n-k+1}(x,t,\rho) := \frac{\overleftarrow{W}^k(\rho t)}{\overleftarrow{W}^k(\rho x)} G_{n-k+1}(x,t,\rho),$$

$$v_k(x,\rho) = \int_0^x \mathcal{G}_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t) \tilde{T}_k^0(t,\rho) \right) dt.$$

Let us consider first the function $v_k(x,\rho)$. From the identity:

$$\rho(q^{(n-k+1)}(t)T_k^0(t,\rho)) \wedge E_{\alpha'}(t,\rho) =$$

$$= \frac{d}{dt} \left((\hat{q}^{(n-k+1)}(t)T_k^0(t,\rho)) \wedge E_{\alpha'}(t,\rho) \right) - (\tilde{q}^{(n-k+1)}(t)T_k^0(t,\rho)) \wedge E_{\alpha'}(t,\rho),$$

where $\alpha \in \mathscr{A}_{n-k+1}$ is arbitrary it follows the relation:

$$\rho \int_{x_0}^x G_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t) T_k^0(t,\rho) \right) dt =$$

$$= G_{n-k+1}(x,t,\rho) \left(\hat{q}^{(n-k+1)}(t) T_k^0(t,\rho) \right) \Big|_{t=x_0}^{t=x} - \int_{t=x_0}^x G_{n-k+1}(x,t,\rho) \left(\tilde{q}^{(n-k+1)}(t) T_k^0(t,\rho) \right) dt.$$

Passing to the limits as $x_0 \to 0$ and taking into account that $\hat{q}_o(0) = 0$ we arrive at the relation:

$$\rho v_k(x,\rho) = d_{0k} \tilde{T}_k^0(x,\rho) + \sum_{\alpha \in \mathscr{A}_{n-k+1}} \chi_\alpha \left| \left(\hat{q}^{(n-k+1)}(x) \tilde{T}_k^0(x,\rho) \right) \wedge E_{\alpha'}(x,\rho) \right| E_\alpha(x,\rho) - \int_0^x \mathscr{G}_{n-k+1}(x,t,\rho) \left(\tilde{q}^{(n-k+1)}(t) \tilde{T}_k^0(t,\rho) \right) dt.$$

$$(13)$$

Since $\tilde{q}_{jj} = 0$, $j = \overline{1, n}$, from (13) and [14] we obtain (in particular) the estimate:

$$||v_k(\cdot,\rho)||_{BC[0,\infty)} = O(\rho^{-1}), \quad \rho \in \mathscr{S}'. \tag{14}$$

In what follows if $V=V(x,\rho)$ is some matrix function then \tilde{V} denotes the matrix function $\tilde{V}(x,\rho):=V(x,\rho)(W(\rho x))^{-1}$, where $W=\mathrm{diag}\,(W_1,\ldots W_n)$. Since $\tilde{\Psi}^0(x,\rho)$ is continuous and bounded in $[0,\infty)\times\overline{\mathscr{S}}$ we have:

$$\|\mathscr{G}_{n-k+1}(x,t,\rho)\| \leqslant M, \quad 0 < t \leqslant x < \infty, \quad \rho \in \mathscr{S}'$$
(15)

with some absolute constant M.

Using the boundedness of $\mathscr{G}_{n-k+1}(x,t,\rho)$ one can obtain the estimate (see also the proof of [9, Theorem 3.1]):

$$\|\mathscr{K}^r(\rho)\| \leqslant M_0 \frac{M_1^r}{r!} \left(\int_0^T \|q(t)\| dt \right)^r,$$

where the norm $\|\mathscr{K}^r(\rho)\|$ assumes the norm of the operator acting in $L_{\infty}(0,T)$ for arbitrary T>0 and the constants M_0,M_1 do not depend on T. This yields the estimate $\|(Id-\mathscr{K}(\rho))^{-1}\|=O(1)$ uniformly in $\rho\in\mathscr{S}'$. Thus (with taking into account (14)), we obtain the auxiliary prior estimate for \hat{T}_k :

$$\|\hat{T}_k(\cdot,\rho)\|_{L_\infty(0,T)} = O(\rho^{-1}), \rho \in \mathscr{S}'$$
(16)

for any T > 0.

In order to make a more detailed study we represent the operator $\mathcal{K}(\rho)$ in the form $\mathcal{K}(\rho) = \mathcal{K}_0(\rho) + \mathcal{K}_1(\rho)$, where:

$$\mathcal{K}_{0}(\rho)f(x) :=$$

$$= \theta^{+}(|\rho x| - 1) \sum_{\alpha \in \mathcal{A}_{n-k+1}} \chi_{\alpha} \int_{|\rho|-1}^{x} \exp(\rho(x - t)(R_{\alpha} - \overleftarrow{R}_{k})) \left| \left(q^{(n-k+1)}(t)f(t) \right) \wedge \mathfrak{f}_{\alpha'} \right| \mathfrak{f}_{\alpha} dt.$$

Here and below the symbols $\theta^{\pm}(\cdot)$ denote the Heaviside step functions:

$$\theta^{+}(\xi) = \begin{cases} 0, & \xi \leqslant 0, \\ 1, & \xi > 0, \end{cases} \quad \theta^{-}(\xi) = \begin{cases} 1, & \xi \leqslant 0 \\ 0, & \xi > 0 \end{cases} = 1 - \theta^{+}(\xi).$$

Lemma 1. Under the conditions of Theorem 1 one has the estimate $\|\mathscr{K}_1(\rho)\| = O(\rho^{-1})$.

Proof. We split the operator as follows: $\mathcal{K}_1 = \mathcal{K}_0^{(1)} + \mathcal{K}_1^{(1)} + \mathcal{K}_2^{(1)}$, where:

$$(\mathcal{K}_0^{(1)}f)(x) = \theta^-(|\rho x| - 1) \int_0^x \mathcal{G}_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t)f(t) \right) dt,$$
$$(\mathcal{K}_1^{(1)}f)(x) = \theta^+(|\rho x| - 1) \int_0^{|\rho|^{-1}} \mathcal{G}_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t)f(t) \right) dt.$$

By virtue of (15) we have:

$$\|\mathscr{K}_{1}^{(1)}f\| \leqslant M\|f\| \cdot \int_{0}^{|\rho|^{-1}} \|q(t)\| dt \leqslant M|\rho|^{-1}\|f\| \cdot \|q(\cdot)\|_{L_{\infty}(0,T)}.$$

Proceeding in a similar way and taking into account that $(\mathcal{K}_0^{(1)}f)(x) \neq 0$ only if $|\rho x| \leq 1$ one can obtain the similar estimate for $\|\mathcal{K}_0^{(1)}f\|$.

Let us consider $\mathscr{K}_{2}^{(1)}$. Using the representation (9) for $G_{n-k+1}(x,t,\rho)$, the asymptotics

$$E_{\alpha}(x,\rho) = \exp(\rho x R_{\alpha})(\mathfrak{f}_{\alpha} + O((\rho x)^{-1})),$$

which is uniform in $|\rho x| \geqslant 1$ and taking into account that $\operatorname{Re}(\rho(x-t)(R_{\alpha} - \overleftarrow{R}_{k})) \leqslant 0$ for any $0 \leqslant t \leqslant x$, $\rho \in \mathscr{S}'$, $\alpha \in \mathscr{A}_{n-k+1}$ we obtain the estimate:

$$\theta^{+}(|\rho x| - 1)\theta^{+}(|\rho t| - 1)\theta^{+}(x - t) \left\| \mathcal{G}_{n-k+1}(x, t, \rho) \left(q^{(n-k+1)}(t)f(t) \right) - \sum_{\alpha \in \mathcal{A}_{n-k+1}} \chi_{\alpha} \exp(\rho(x - t)(R_{\alpha} - \overleftarrow{R}_{k})) \left| \left(q^{(n-k+1)}(t)f(t) \right) \wedge \mathfrak{f}_{\alpha'} \right| \mathfrak{f}_{\alpha} \right\| \leqslant \frac{M}{|\rho t|} \|q(t)\|$$

with some absolute constant M. Since under the conditions of Theorem 1 $t^{-1}q(t) \in L_1(0,\infty)$ the estimate above yields

$$\|\mathscr{K}_{2}^{(1)}f\| \leqslant M|\rho|^{-1}\|f\| \cdot \int_{0}^{\infty} t^{-1}\|q(t)\| dt$$

and therefore $\|\mathscr{K}_{2}^{(1)}\| = O(\rho^{-1})$.

24 Научный отдел

Lemma 2. Under the conditions of Theorem 1 one has the estimate $\|\mathscr{K}_0^2(\rho)\| = O(\rho^{-1})$.

Proof. We have:

$$(\mathscr{K}_{0}^{2}f)(x) = \theta^{+}(|\rho x| - 1) \sum_{\alpha \in \mathscr{A}_{n-k+1}} \int_{|\rho|^{-1}}^{x} \exp(\rho(x - t)(R_{\alpha} - \overleftarrow{R}_{k})) \chi_{\alpha} \times \\ \times \left| \left(q^{(n-k+1)}(t)(\mathscr{K}_{0}f)(t) \right) \wedge \mathfrak{f}_{\alpha'} \right| \mathfrak{f}_{\alpha} dt, \\ \chi_{\alpha} \left| \left(q^{(n-k+1)}(t)(\mathscr{K}_{0}f)(t) \right) \wedge \mathfrak{f}_{\alpha'} \right| = \theta^{+}(|\rho t| - 1) \times \\ \times \sum_{\beta \in \mathscr{A}_{n-k+1}} \chi_{\beta} \int_{|\rho|^{-1}}^{t} \exp(\rho(t - \tau)(R_{\beta} - \overleftarrow{R}_{k})) \left| \left(q^{(n-k+1)}(\tau)f(\tau) \right) \wedge \mathfrak{f}_{\beta'} \right| Q_{\alpha\beta}(t) d\tau,$$

where $Q_{\alpha\beta}(t) := \chi_{\alpha} \left| \left(q^{(n-k+1)}(t) \mathfrak{f}_{\beta} \right) \wedge \mathfrak{f}_{\alpha'} \right|$.

Thus, we can rewrite:

$$(\mathscr{K}_0^2 f)(x) = \theta^+(|\rho x| - 1) \sum_{\alpha\beta \in \mathscr{A}_{n-k+1}} \int_{|\rho|^{-1}}^x \left| \left(q^{(n-k+1)}(\tau) f(\tau) \right) \wedge \mathfrak{f}_{\beta'} \right| H_{\alpha\beta}(x, \tau, \rho) d\tau,$$

where:

$$H_{\alpha\beta}(x,\tau,\rho) = \int_{\tau}^{x} Q_{\alpha\beta}(t) \exp(\rho(x-t)(R_{\alpha} - \overleftarrow{R}_{k}) + \rho(t-\tau)(R_{\beta} - \overleftarrow{R}_{k})) \mathfrak{f}_{\alpha} dt.$$

We notice again that $\operatorname{Re}(\rho(x-t)(R_{\alpha}-\overleftarrow{R}_{k})+\rho(t-\tau)(R_{\beta}-\overleftarrow{R}_{k}))\leqslant 0$ for any $0\leqslant\tau\leqslant t\leqslant x,\ \rho\in\mathscr{S}',\ \alpha,\beta\in\mathscr{A}_{n-k+1}.$ Moreover, under the conditions of Theorem 1 $Q_{\alpha\beta}(\cdot)$ are absolutely continuous and $Q_{\alpha\beta}(t)\equiv 0$ if $\alpha=\beta$. This yields the estimate

$$\theta^{+}(|\rho\tau|-1)H_{\alpha\beta}(x,\tau,\rho) = O(\rho^{-1}),$$

which is uniform in $0 \le \tau \le x$, $\rho \in \mathscr{S}'$. The estimate implies the required assertion. \square **Proof of Theorem 1.** We have $\hat{T}_k(\cdot,\rho) = v_k(\cdot,\rho) + \mathscr{K}(\rho)v_k(\cdot,\rho) + \mathscr{K}^2(\rho)\hat{T}_k(\cdot,\rho)$. We note that

$$(\mathcal{K}(\rho)\tilde{T}_{k}^{0}(\cdot,\rho))(x) = \int_{0}^{x} \mathcal{G}_{n-k+1}(x,t,\rho) \left(q^{(n-k+1)}(t)\tilde{T}_{k}^{0}(t,\rho) \right) = v_{k}(x,\rho) = O(\rho^{-1})$$

uniformly for $\rho \in \mathcal{S}'$, $x \in (0,T)$.

This, prior estimate (16), (14) and Lemmas 1, 2 yield:

$$\hat{T}_k(\cdot,\rho) = v_k(\cdot,\rho) + \mathcal{K}_0(\rho)\omega_k(\cdot,\rho) + O\left(\rho^{-2}\right),\tag{17}$$

where

$$\rho\omega_{k}(x,\rho) = \sum_{\alpha \in \mathscr{A}_{n-k+1}} \chi_{\alpha} \left| \left(\hat{q}^{(n-k+1)}(x) \tilde{T}_{k}^{0}(x,\rho) \right) \wedge E_{\alpha'}(x,\rho) \right| E_{\alpha}(x,\rho) - \int_{0}^{x} \mathscr{G}_{n-k+1}(x,t,\rho) \left(\tilde{q}^{(n-k+1)}(t) \tilde{T}_{k}^{0}(t,\rho) \right) dt.$$

$$(18)$$

and the $O(\cdot)$ term assumes an estimate in $L_{\infty}(0,T)$ norm.

From [14, Theorem 1] and (18) we have:

$$\rho\omega_k(x,\rho) = \sum_{\alpha \in \mathscr{A}_{n-k+1}} \chi_\alpha \left| (\hat{q}^{(n-k+1)}(x)\tilde{T}_k^0(x,\rho)) \wedge E_{\alpha'}(x,\rho) \right| E_\alpha(x,\rho) + o(1),$$

that yields:

$$\theta^{+}(|\rho t| - 1)\rho\omega_{k}(t, \rho) =$$

$$= \theta^{+}(|\rho t| - 1) \sum_{\alpha,\beta \in \mathscr{A}_{n-k+1}} T_{k\beta}^{0} \exp(\rho t(R_{\beta} - \overleftarrow{R}_{k})) \hat{Q}_{\alpha\beta}(t) \mathfrak{f}_{\alpha} + \rho^{-1} \hat{\omega}_{k}(t, \rho) + o(1),$$

where $\hat{Q}_{\alpha\beta}(t) = \chi_{\alpha} \left| (\hat{q}^{(n-k+1)}(t)\mathfrak{f}_{\beta}) \wedge \mathfrak{f}_{\alpha'} \right|$, the $o(\cdot)$ term assumes an estimate in $L_{\infty}(0,T)$ norm and $t\hat{\omega}_k(t,\rho)$ is uniformly bounded in $\{|\rho t| \geqslant 1\}$.

Under the conditions of Theorem 1 we have $t^{-1}q(t) \in L_1(0,\infty)$. This yields $\mathcal{K}_0(\rho)\hat{\omega}_k(\cdot,\rho) = O(1)$ and thus from the representation above we obtain:

$$(\mathcal{K}_{0}(\rho)\omega_{k}(\cdot,\rho))(x) = \rho^{-1}\theta^{+}(|\rho x|-1)\sum_{\alpha,\beta,\gamma\in\mathcal{A}_{n-k+1}}\chi_{\gamma}T_{k\beta}^{0}\int_{|\rho|-1}^{x}\exp(\rho(x-t)(R_{\gamma}-\overleftarrow{R}_{k})+\rho t(R_{\beta}-\overleftarrow{R}_{k}))\hat{Q}_{\alpha\beta}(t)\left|\left(q^{(n-k+1)}(t)\mathfrak{f}_{\alpha}\right)\wedge\mathfrak{f}_{\gamma'}\right|\mathfrak{f}_{\gamma}dt + o(\rho^{-1}) = \rho^{-1}\theta^{+}(|\rho x|-1)\times$$

$$\times\sum_{\beta,\gamma\in\mathcal{A}_{n-k+1}}T_{k\beta}^{0}\int_{|\rho|-1}^{x}\exp(\rho(x-t)(R_{\gamma}-\overleftarrow{R}_{k})+\rho t(R_{\beta}-\overleftarrow{R}_{k}))\tilde{Q}_{\gamma\beta}(t)\mathfrak{f}_{\gamma}dt + o(\rho^{-1}),$$

where:

$$\tilde{Q}_{\gamma\beta}(t) := \sum_{\alpha \in \mathscr{A}_{n-k+1}} Q_{\gamma\alpha}(t) \hat{Q}_{\alpha\beta}(t), \quad Q_{\gamma\alpha}(t) = \chi_{\gamma} \left| \left(q^{(n-k+1)}(t) \mathfrak{f}_{\alpha} \right) \wedge \mathfrak{f}_{\gamma'} \right|$$

and the $o(\cdot)$ term assumes an estimate in $L_{\infty}(0,T)$. Under the conditions of Theorem 1 the functions $Q_{\alpha\beta}$ in $\hat{Q}_{\alpha\beta}$ (for any pair of multi-indices α,β) are absolutely continuous. Therefore, we have for $\gamma \neq \beta$:

$$\int_{|\rho|^{-1}}^{x} \exp(\rho(x-t)(R_{\gamma} - \overleftarrow{R}_{k}) + \rho t(R_{\beta} - \overleftarrow{R}_{k})) \tilde{Q}_{\gamma\beta}(t) dt = O(\rho^{-1}),$$

that yields:

$$(\mathcal{K}_0(\rho)\omega_k(q,\cdot,\rho))(x) =$$

$$= \rho^{-1}\theta^+(|\rho x| - 1) \sum_{\beta \in \mathcal{A}_{n-k+1}} T_{k\beta}^0 \exp(\rho x(R_\beta - \overleftarrow{R}_k)) \int_{|\rho|^{-1}}^x \tilde{Q}_{\beta\beta}(t) dt \mathfrak{f}_\beta + o(\rho^{-1}).$$

Substituting the obtained asymptotics to the representation (17) we arrive at:

$$\hat{T}_k(x,\rho) = v_k(x,\rho) + \rho^{-1}\theta^+(|\rho x| - 1) \times$$

$$\times \sum_{\beta \in \mathscr{A}_{n-k+1}} T_{k\beta}^0 \exp(\rho x (R_\beta - \overleftarrow{R}_k)) \int_{|\rho|^{-1}}^x \tilde{Q}_{\beta\beta}(t) dt \mathfrak{f}_\beta + o(\rho^{-1}).$$
(19)

Here, as above, the $o(\cdot)$ term assumes an estimate in $L_{\infty}(0,T)$ norm. But all the terms in (19) are actually continuous with respect to $x \in (|\rho^{-1}|,T)$. This means that the expansion can be considered in point-wise sense as $\rho \to \infty$ while x>0 is arbitrary fixed.

Now we notice that

$$\int_{|\rho|^{-1}}^{x} \tilde{Q}_{\beta\beta}(t) dt \to \int_{0}^{x} \tilde{Q}_{\beta\beta}(t) dt = g_{k\beta\beta}(x)$$

as $\rho \to \infty$. Then we use the representation (13) for $v_k(x,\rho)$ and thus we obtain the required asymptotics.

Acknowledgements: This work was supported by the Russian Science Foundation (project No. 17-11-01193).

References

- 1. Brunnhuber R., Kostenko A., Teschl G. Singular Weyl Titchmarsh Kodaira theory for one-dimensional Dirac operators. *Monatshefte für Mathematik*, 2014, vol. 174, pp. 515–547. DOI: https://doi.org/10.1007/s00605-013-0563-5
- 2. Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac operators. *J. Math. Phys.*, 2007, vol. 48, iss. 4, 043501, 14 p. DOI: https://doi.org/10.1063/1.2709847
- 3. Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac and Schr⁵odinger operators from two spectra. *J. Math. Anal. Appl.*, 2008, vol. 339, iss. 1, pp. 45–57. DOI: https://doi.org/10.1016/j.jmaa.2007.06.034
- 4. Serier F. Inverse Problems Inverse spectral problem for singular Ablowitz-Kaup-Newell-Segur operators on [0, 1]. *Inverse Problems*, 2006, vol. 22, no. 4, pp. 1457–1484. DOI: https://doi.org/10.1088/0266-5611/22/4/018
- 5. Gorbunov O. B., Shieh C.-T., Yurko V. A. Dirac system with a singularity in an interior point. *Applicable Analysis*, 2016, vol. 95, iss. 11, pp. 2397–2414. DOI: https://doi.org/10.1080/00036811.2015.1091069
- 6. Beals R., Coifman R. R. Scattering and inverse scattering for first order systems. *Comm. Pure Appl. Math.*, 1984, vol. 37, iss. 1, pp. 39–90. DOI: https://doi.org/10.1002/cpa.3160370105
- 7. Zhou X. Direct and inverse scattering transforms with arbitrary spectral singularities. *Comm. Pure Appl. Math.* 1989, vol. 42, iss. 7, pp. 895–938. DOI: https://doi.org/10.1002/cpa.3160420702
- 8. Yurko V. A. Inverse spectral problems for differential systems on a finite interval. *Results Math.*, 2005, vol. 48, iss. 3–4, pp. 371–386. DOI: https://doi.org/10.1007/BF03323374
- 9. Ignatyev M. Spectral analysis for differential systems with a singularity. *Results Math.*, 2017, vol. 71, iss. 3–4, pp. 1531–1555. DOI: https://doi.org/10.1007/s00025-016-0605-0
- 10. Yurko V. A. On higher-order differential operators with a singular point. *Inverse Problems*, 1993, vol. 9, no. 4, pp. 495–502. DOI: https://doi.org/10.1088/0266-5611/9/4/004
- 11. Fedoseev A. E. Inverse problems for differential equations on the half-line having a singularity in an interior point. *Tamkang Journal of Mathematics*, 2011, vol. 42, no. 3, pp. 343–354. DOI: https://doi.org/10.5556/j.tkjm.42.2011.879
- 12. Beals R., Deift P., Tomei C. *Direct and inverse scattering on the line*. Providence, Rhod Island, American Mathematical Society, 1988. 209 p.
- 13. Sibuya Yu. Stokes phenomena. *Bull. Amer. Math. Soc.*, 1977, vol. 83, no. 5, pp. 1075–1077.
- 14. Ignatiev M. Integral transforms connected with differential systems with a singularity. *Tamkang Journal of Mathematics*, 2019, vol. 50, no. 3, pp. 253–268. DOI: https://doi.org/10.5556/j.tkjm.50.2019.3353

Cite this article as:

Ignatiev M. Yu. Asymptotics of Solutions of Some Integral Equations Connected with Differential Systems with a Singularity. *Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform.*, 2020, vol. 20, iss. 1, pp. 17–28. DOI: https://doi.org/10.18500/1816-9791-2020-20-1-17-28

УДК 517.984

Асимптотики решений некоторых интегральных уравнений, связанных с дифференциальными системами с особенностью

М. Ю. Игнатьев

Игнатьев Михаил Юрьевич, кандидат физико-математических наук, доцент кафедры математической физики и вычислительной математики, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83, mikkieram@gmail.com, ignatievmu@info.sgu.ru

В работе изучаются некоторые аспекты теории рассеяния для сингулярных систем дифференциальных уравнений $y'-x^{-1}Ay-q(x)y=\rho By,\ x>0$ со спектральным параметром ρ , где $A,B,q(x),x\in(0,\infty)-n\times n$ матрицы, причем матрицы A,B постоянны. Основным предметом исследования являются некоторые вольтерровские интегральные уравнения относительно тензорно-значных функций. Решения этих уравнений играют центральную роль в построении так называемых решений типа Вейля для исходной системы дифференциальных уравнений. Поскольку классические методы при наличии особенности оказываются неприменимыми, изучение рассматриваемых интегральных уравнений становится в этом случае ключевым этапом исследования аналитических и асимптотических свойств решений типа Вейля. В данной работе мы рассматриваем важный частный случай, когда матрица-функция $q(\cdot)$ является гладкой и q(0)=0. В этом случае для решений рассматриваемых интегральных уравнений удается получить асимптотические разложения при $\rho \to \infty$ с оценкой остаточного члена $o\left(\rho^{-1}\right)$. Полученный результат позволяет получить асимптотики для решений типа Вейля, играющие, в свою очередь, важную роль при исследовании обратной задачи рассеяния.

Ключевые слова: дифференциальные системы, особенности, интегральные уравнения, асимптотические разложения.

Поступила в редакцию: 26.06.2019 / Принята: 01.07.2019 / Опубликована: 02.03.2020

Статья опубликована на условиях лицензии Creative Commons Attribution License (СС-ВУ 4.0)

Благодарности. Работа выполнена при поддержке Российского научного фонда (проект № 17-11-01193).

Образец для цитирования:

Ignatiev M. Yu. Asymptotics of Solutions of Some Integral Equations Connected with Differential Systems with a Singularity [Игнатьев М. Ю. Асимптотики решений некоторых интегральных уравнений, связанных с дифференциальными системами с особенностью] // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2020. Т. 20, вып. 1. С. 17–28. DOI: https://doi.org/10.18500/1816-9791-2020-20-1-17-28