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Our studies concern some aspects of scattering theory of the singular differential systems
y —a 1Ay — q(z)y = pBy, x > 0 with n x n matrices A, B, q(z),z € (0,00), where A, B are
constant and p is a spectral parameter. We concentrate on investigation of certain Volterra integ-
ral equations with respect to tensor-valued functions. The solutions of these integral equations
play a central role in construction of the so-called Weyl-type solutions for the original differential
system. Actually, the integral equations provide a method for investigation of the analytical and
asymptotical properties of the Weyl-type solutions while the classical methods fail because of the
presence of the singularity. In the paper, we consider the important special case when ¢ is smooth
and ¢(0) = 0 and obtain the classical-type asymptotical expansions for the solutions of the con-
sidered integral equations as p — oo with o (p*l) rate remainder estimate. The result allows one
to obtain analogous asymptotics for the Weyl-type solutions that play in turn an important role in
the inverse scattering theory.

Keywords: differential systems, singularity, integral equations, asymptotical expansions.

Received: 26.06.2019 / Accepted: 01.07.2019 / Published: 02.03.2020

This is an open access article distributed under the terms of Creative Commons Attribution
License (CC-BY 4.0)

DOI: https://doi.org/10.18500/1816-9791-2020-20-1-17-28

INTRODUCTION

Our studies concern some aspects of scattering theory of the differential systems
y —a Ay —q(a)y = pBy, x>0 (1)

with n x n matrices A, B, q(z),z € (0,00), where A, B are constant and p is a spectral
parameter.

Differential equations with coefficients having non-integrable singularities at the end
or inside the interval often appear in various areas of natural sciences and engineering.
For n = 2, there exists an extensive literature devoted to different aspects of spectral
theory of the radial Dirac operators, see, for instance [1-5].

Systems of the form (1) with n > 2 and arbitrary complex eigenvalues of the mat-
rix B appear to be considerably more difficult for investigation even in the “regular”
case A =0 [6]. Some difficulties of principal matter also appear due to the presence of
the singularity. Whereas the “regular” case A = 0 has been studied fairly completely to
date [6-8], for the system (1) with A # 0 there are no similar general results.

The important role in scattering theory is played by a certain distinguished basis of
generalized eigenfunctions for (1) (the so-called Weyl-type solutions, see, for instance
[9]). In the presence of the singularity construction and investigation of this basis
encounters some difficulties which do not appear in the “regular” case A = 0. In
particular, one can not use the auxiliary Cauchy problems with the initial conditions
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at © = 0. The approach presented in [10] (see also [11] and references therein) for the
scalar differential operators

v ,
ly=y™ + (xnij +q5(2)) V) 2)

is based on using some special solutions of the equation ¢y = Ay that also satisfy certain
Volterra integral equations. This approach assumes some additional decay condition
for the coefficients g;(x) as « — 0, moreover, the required decay rate depends on
eigenvalues of the matrix A. In this paper, we do not impose any additional restrictions
of such a type. Instead, we use a modification of the approach first presented in [12] for
the higher-order differential operators with regular coefficients on the whole line and
recently adapted for differential systems of the form (1) on the semi-axis in [9].

In brief outline the approach can be described as follows. We consider some auxiliary
systems with respect to the functions with values in the exterior algebra AC™. Our
study of these auxiliary systems centers on two families of their solutions that also
satisfy some asymptotical conditions as x — 0 and x — oo respectively, and can be
constructed as solutions of certain Volterra integral equations. As in [12] we call these
distinguished tensor solutions the fundamental tensors. The main difference from the
above-mentioned method used in [10] is that we use the integral equations to construct
the fundamental tensors rather than the solutions for the original system. Since each of
the fundamental tensors has minimal growth (as  — 0 or # — oo) among solutions of
the same auxiliary system, this step does not require any decay of ¢(x) as z — 0.

Construction and properties of the fundamental tensors were considered in details in
our paper [9] provided that ¢(-) is absolutely continuous and both ¢, ¢’ are integrable on
the semi-axis (0, 00). In this paper, we consider the important special case ¢(0) = 0 and
obtain the classical-type asymptotical expansions for the fundamental tensors as p — o
with o (p~!) rate remainder estimate.

1. ASSUMPTIONS AND NOTATIONS. FORMULATIONS OF THE RESULTS

We are to discuss first the unperturbed system:
y' — a7 Ay = pBy (3)
and its particular case corresponding to the value p =1 of the spectral parameter
y' —a'Ay = By (4)

but to complex (in general) values of x.

Assumption 1. Matrix A is off-diagonal. The eigenvalues {y;}7_, of the matrix A
are distinct and such that p; — py, ¢ Z for j # k, moreover, Reyy < Reps < -+ < Rep,,
Reuk 7é 0, k= I,_n

Assumption 2. B = diag (by, ..., b,), the entries by, ..., b, are nonzero distinct points

on the complex plane such that »_ b, = 0 and such that any 3 points are noncolinear.
7j=1
Under Assumption 1 system (4) has the fundamental matrix ¢(x) = (¢1(z), ..., c,(x)),
where

cx(z) = 2t e (x),

detc(xz) = 1 and all ¢(-) are entire functions, ¢;(0) = by, by is an eigenvector of the
matrix A corresponding to the eigenvalue p. We define Ci(z, p) := cx(pz), x € (0,00),
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=

p € C. We note that the matrix C(z,p) is a solution of the unperturbed system (3)
(with respect to x for the given spectral parameter p).
Let X be the following union of lines through the origin in C:

S= |J {z:Re(zb;) = Re(zby)}.
(k.g):j#k

By virtue of Assumption 2 for any z € C\ X there exists the ordering Ry,..., R, of
the numbers by,...,b, such that Re(R;z) < Re(R2z)--- < Re(R,z). Let .¥ be a sector
{z = rexp(iy),r € (0,00),7 € (7,72)} lying in C\ X. Then [13] the system (4) has
the fundamental matrix e(z) = (e1(x),...,e,(x)) which is analytic in ./, continuous in
#\ {0} and admits the asymptotics:

ep(z) = ™ (f + 27 (), m(z) =0(1), z—o00, z€.7,

where (fi,...,f,) = f is a permutation matrix such that (Ry,..., R,) = (b1,...,b,)f. We
define E(x,p) := e(px).
Everywhere below we assume that the following additional condition is satisfied.
Condition 1. For all k = 2,n the numbers

A) = det(e (), ..., ep_1(2), cp(), ..., cn(z))

are not equal to 0.

Under Condition 1 the system (4) has the fundamental matrix
() = @W9(x),...,¢°%x)) which is analytic in .#, continuous in & \ {0} and
admits the asymptotics:

YR(rt) = exp(atRy)(fr +0(1)), t—o00, z€.7, Yyr)=O0(a"), x—0.

We define ¥O(z,p) := v%pz). As above, we note that the matrices E(zx,p), ¥°(x,p)
solve (3).

In the sequel we use the following notations:

— {er}}_, is the standard basis in C™,

— o, is the set of all ordered multi-indices o = (..., ), 1 < @ < -+ <
a; €{1,2,...,n}
— for a sequence {u;} of vectors and a multi-index a = (ay,...,a,,) we define
Ug = Ugy N NUg,,;
- for a numerical sequence {a;} and a multi-index o we define a, = > aj,
jEa
a = T] ”

JEQ
— for a multi-index « the symbol o/ denotes the ordered multi-index that complements
ato (1,2,...,n);
— for kK =1,n we denote

k n
- 2 : Al —k . ko
arp = aj, arp .= aj, a .—Haj, a .—HCLJ'.
j j=1 j=k

3

We note that Assumptions 1, 2 imply, in particular, > pr = > Rr = 0 and therefore
k=1 k=1
for any multi-index « one has R, = —R, and po = —pa;
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— the symbol V(™) where V is n x n matrix, denotes the operator acting in A™C"
so that for any vectors w4, ..., u,, the following identity holds:

V(m)(u1/\u2/\"'/\um):Zu1/\u2/\"'/\Uj_l/\VUj/\Uj+1/\"'/\um;

— if h € A"C” then |h| is a number such that h = |hfe; Aea A+ Aey;

— for h € N™C" we set |||l := > |ha|, where {h,} are the coefficients from the
aEJme

expansion h = Y h,e,.
QEL

We use the same notation L,(a,b) for all the spaces of the form L,((a,b), &), where &
is a finite-dimensional space. The notation Cfa, ] for the spaces of continuous functions
will be used in a similar way.

Everywhere below the symbol .# denotes some (arbitrary) open sector with the
vertex at the origin lying in C\ X.

For each fixed p € .7\ {0} =: ./ we consider the following Volterra integral
equations (k = 1,n):

Y () = T{(x, p) / w2, 8,p) (¢ DY (1) (5)
0
Y(a) = FGep) — [ Gulotop) (¢V1(0Y (1) dr, ©)
where
TIS(I,p) = Ck('rvp)/\'”/\cn(xap)? (7)
FY(x,p) = Er(x,p) A=+ A By(,p) = U{(z,p) A--- AW(, p) (8)

and G,,(x,t, p) is an operator acting in A™C™ as follows:

G, t,0)f = Y 0alf A Cu(t,p)| Calz, p). 9)

Q€D

Here and below o, := [ha A bo|.
For any p € .’ equations (5) and (6) were shown to have the unique solutions
Ty(x,p) and Fy(x, p) respectively such that (see [9] for details):

pr) x| lpx] < 1

%

Xp(mek)’, |px| > 1,
)
(px

@

1T, p)l| < M{

e, e <1
W ezl > 1

(px
exp

[, p)| < M{

We call the functions Fi(z,p), Tx(z,p) the fundamental tensors. Note that the
fundamental tensors solve the auxiliary systems

Y'=Q"(z,p)Y, Qlz,p):=2"A+pB+q(x) (10)
withm=kandm=n—%k + 1.

20 HayyHeir otaen



M. Yu. Ignatiev. Asymptotics of Solutions of Some Integral Equations :

We note that the tensors {E,(x, p)}acw, form the fundamental system of solutions
for the system (10) in the “unperturbed” case. Therefore, the following representation

holds:
T, p)= > TiEalz,p) (11)

€Ay _py1

with z-independent coefficients T}, . Taking into account the special construction of the
fundamental matrices C(z, p), E(x, p) one can conclude that the coefficients T}, do not
depend on p as well.

The G,,(z,t, p) terms in equations (5), (6) are actually the Green operator functions
for the nonhomogeneous systems:

V' = QU (z, p)Y + f(a).

In order to construct them one can use variuos fundamental systems of solutions of
the unperturbed system (3). In particular the following representations hold:

G, t,0)f = D Xa [F AL )| Vo, 0) = Y Xaf A Earlt, p)| Eal, p). (12)

A, A€y,

Here and below x, := |[fa A for]-
In the paper, we study the asymptotical behavior of the fundamental tensors for
p — oo. In [9] the following expansions were obtained:

Ty(z,p) = T (z,p) + O <p‘5 exp (p:z:%k)) , €€(0,1),

Fy(w,p) = F{(z,p) + O (p ™ exp (po iy ))

for any fixed x € (0,00) and p — oo, p € .¥’/. We show that under the additional
condition ¢(0) = 0 more detailed expansion can be obtained.
Let Wy (&) be the function defined as follows:

Wo(&) = (1= [ENE+IE1%, [l <1, Wo(§) == (Wo(¢71)7 ¢l > 1.

Notice that Wy () is continuous in £ € C, never vanishes for nonzero ¢ and admits
the estimate:
Mifg] < [Wo(§)] < Mal¢]

for all & € C. Moreover, we have Wy(§) = 1 if [{] = 1 and the asymptotics
Wo(€) =&(1+0(1)) hold as & — 0 and & — oo.
We introduce the following weight functions:

W (€M) exp(Rif), €] < 1,
Wild) = {exp(RkEL €| > 1.

From the definition and the above-mentioned properties of W;(-) it follows that the
weight functions Wy(-),k = 1,n are all continuous in .#’, never vanish and admit the
asymptotics Wy (&) = & (1 +o(1)) as & — 0. We define

Fi(a, p) = (WH(p2)) "Fiulw.p),  Tile,p) = (WH(pa)) " Tu(a, p).
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Theorem 1. Suppose that q(-) is an absolutely continuous off-diagonal matrix
function such that q(0) = 0. Denote by q§,(-) the off-diagonal matrix function such that
(B, Go(z)] = —q(x) for all = > 0 (here [-,-] denotes the matrix commutator). Define the
diagonal matrix d(z) = diag (di(x),...,d,(z)), where

i) = [ (a0, A),, de
and set §(x) := 4,(x) + d(z).
Suppose  that  all  the  [unctions  qy(-),q;(-) and  Gy;(-), where
q(z) == ¢ (z) + 27 q(x), A] are from X, := L1(0,00) N L,(0,00), p > 2.
Then for each fixed x > 0 and p — oo, p € /' the following asymptotics hold:

p(Ti(x, p) = T(x, p)) = dowT{(x, ) + D Tiggras(x) exp(pz(Rs — R))fa +o(1),

o,BEDy i1
p (Flw,p) = E2(2,0)) = 3 fral@)fa +o(1).
aE),

dok = —0ax() ’(d(n_k+1)(0)ba*(k)> A Bax (k)
a*(k) = (k,...,n) and the coefficients in the representations are defined as follows:

fka(x) = ( (k)( )fa*(k ) A foa’l
for a # a,(k):=(1,... k),
Sy (7) = — Z /on*(k) (@™ (£)fa) AT )| Xa | (@9 () o) A o] dt;
Q€ o

Gras(2) = Xa [(@"7FD (2)F5) A faor
for B # a,

xT

grps(x) = > /XB (¢ (0)Fa) A S

€Dy k1 0

2. PROOF OF THEOREM 1

We consider in details the function Ty(x,p), for the function Fy(z,p) similar argu-
ments are valid. R . .

For the function Ty(z,p) = Ti(z,p) — T(x,p) we have the representation
Ti(-, p) = (Id — # (p)) " wp(-, p), where J# (p) is an operator of the form:

Xa | @D (OF5) Afor| dt

wwwmw:/%%mamwmewﬂmﬁ

acting in L(0,T), T € (0,00) is arbitrary. Here and below

gén—k—i-l(xv t7 p) = %Gn—k—kl(x? tv P),
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(
A

wlep) = [ Grsatotop) (4" IOT ) dr
0

Let us consider first the function vi(z, p). From the identity:
pld" TR (2, p) A Ear(t, p) =

= d% (@ VTP (E p) A Eur(t, p)) — (§"FD@)TE ) A Bor (. p),

where o € o7, .1 is arbitrary it follows the relation:

x

p [ Gorealitop) (4" IOTE )t =

o
x

N t=x ~(n—
= Gn—k-‘rl(xa t P) (q( F+) (t)TlS(t’ p)) |t:x0 B / Gn—k+1($7 t p) (q( F+l) (t)Tlg(ta p)) dt.

o

Passing to the limits as o — 0 and taking into account that ¢,(0) = 0 we arrive at
the relation:

pui(, p) = dox T} (z, p) + Z Xa

Q€D k41

(@0 (@) T, ) A B (2,0)| Eal, p)-

/ G (o,t,p) (§ DT p)) . (13)
0

Since ¢;; =0, j = 1,n, from (13) and [14] we obtain (in particular) the estimate:
I (s p)lBero.0e) = Olp™"), p€ " (14)

In what follows if V' = V/(z, p) is some matrix function then V denotes the matrix
function V'(z, p) := V(z, p)(W(px))~", where W = diag (W1,...W,,). Since ¥°(z, p) is
continuous and bounded in [0, 00) x . we have:

1Gn—1(z,t,p)| <M, 0<t<w<oo, p€S (15)

with some absolute constant M.
Using the boundedness of ¥, _.1(x,t,p) one can obtain the estimate (see also the
proof of [9, Theorem 3.1]):

r

o< s ([ o)

rl

where the norm ||.#7"(p)|| assumes the norm of the operator acting in L. (0,7") for
arbitrary 7" > 0 and the constants M, M; do not depend on 7. This yields the estimate
|(Id— 2 (p)) || = O(1) uniformly in p € /. Thus (with taking into account (14)), we
obtain the auxiliary prior estimate for 7:

I1T3(s ) |0y = Op ™), p € " (16)
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for any 7" > 0.

In order to make a more detailed study we represent the operator % (p) in the form
H (p) = Ho(p) + Hi(p), where:

Ho(p)f(x) ==

ool -1 Y xe / exp(p(e — £)(Ra — Ri)) | (@™ D) £(8) A fur| o .

ACn—ktl |1

Here and below the symbols 6%(-) denote the Heaviside step functions:

)0, <0, oL <0
9*(6)—{1’ £ 0, 0=() = {o €50 07 ().

Lemma 1. Under the conditions of Theorem 1 one has the estimate

1A (p) = O (p71).
Proof. We split the operator as follows: J# = %(1) + %(1) + %(1), where:

(D ) () =07 (|pw| = 1) / Gorri(@,1,p) (¢"H DS (0)) dt,

lol ="
4D P () = 0 (lpz] = 1) / Gnra(,t,0) (¢ (0 F(2) dt

By virtue of (15) we have:
|71

lp
(B MHfH/O la)ll dt < Mlp|"If 1 a0 wior)-

Proceeding in a similar way and taking into account that (£ f)(z) # 0 only if |pz| < 1
one can obtain the similar estimate for \|Ji6(1)f]|.

Let us consider %(1). Using the representation (9) for G, _xy1(z,t, p), the asymp-
totics

Eo(x,p) = exp(prRa)(fo + O ((px) ™)),

<_
which is uniform in |pz| > 1 and taking into account that Re(p(x — t)(Ro, — Ry)) < 0
forany 0 <t <z, pe.Y, a€ o, 1 we obtain the estimate:

0* (Jpa] = )0 (1pt] — 10 (& — ) |G (.1, p) (¢ F (0 (1))

S Xeexp(p(z — ) (Ra = R)) | (@™ 0@ F(0) A Fa

Q€D k41

|||q( )l

<
\pt

with some absolute constant M. Since under the conditions of Theorem 1
t7'q(t) € L1(0,00) the estimate above yields

140 £l < Mipl ™ 1] - / g(t)] de
and therefore ||| = O(p1). O
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Lemma 2. Under the conditions of Theorem 1 one has the estimate

125 (p)l = O (p7").
Proof. We have:

T

(A2 F)(w) = 0 (o] 1) S / exp(p(a — t)(Ra — Bi))xax

€Ayt lp|~*
< [ (q" V@) (A f) () Ao Fa
Xa | (@@ (A f) (1) Afar| = 07 (|pt] = 1)%

Z Xﬁ/ exp(p(t — 7)(Rg — ka( PR F(7)) Afa| Qas(t) dr
BEy 41 lol =1
where Qag(t) = Xa |(q(”_k+1)(t)f5) A\ fa/ .
Thus, we can rewrite:
() (@) =0 (lpz| = 1) > (¢ () (7)) Afor| Hapla, 7, p) dr,

—1
€ g1 ” P!

where:
Hop(z,7.p) = / " Quslt) explple — 1) (Ra — Bi) + plt — ) (Rs — R dt.

We notice again that Re(p(z — t)(R, — (Ek) + p(t — 7)(Rs — <Ek)) < 0 for any
0<7<t<z, ped af € o, 1. Moreover, under the conditions of Theorem 1
Qap(+) are absolutely continuous and Q,s(t) = 0 if a = 8. This yields the estimate

0" (|p7] — 1) Hap(z, 7, p) = O(p™"),

which is uniform in 0 < 7 < x, p € .¥’. The estimate implies the required assertion. [J

Proof of Theorem 1. We have Ty(-, p) = vi(-, p) + & (p)v(-, p) + H# 2(p)Ti(-, p).
We note that

HPTD)) = [ Groirlatop) (6O ) = o) = O

uniformly for p € ., v € (0,T).
This, prior estimate (16), (14) and Lemmas 1, 2 yield:

Ti(-, p) = vi(, p) + Ho(p)wi (-, p) + O (p72) (17)

where

por(,p) = Y Xa

€y _py1

@ @), p)) A Bz, p)| Eal, p)-

- / (.t p) (0Tt ) di. (18)

and the O(-) term assumes an estimate in L. (0,7") norm.
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From [14, Theorem 1] and (18) we have:

pur(t,p) = D Xa

OCEvQ{n—k-Q—l

(@D (@) T (2, ) A Bar(, p)| Balz, p) + 0(1),

that yields:

0% (|pt] — 1) pwr(t, p) =
— ot (ptl—1) S T exp(pt(Ry — Ri)Qup(B)fa+ p'@k(t, p) + o(1),

o,BE€EAy 41

where Qus(t) = Xa [ (@™ *V(1)fs) Afar|, the o(-) term assumes an estimate in L. (0,7T)
norm and twy(t, p) is uniformly bounded in {|pt| > 1}.

Under the conditions of Theorem 1 we have ¢t '¢q(t) € L;(0,00). This yields
Ho(p)wi(-, p) = O(1) and thus from the representation above we obtain:

xT

(o)) = 0% ol 1) Y Tl [ explole (R, ~ R+

0475:’Y€Wn7k+1 lpl—l

dt +o(p™') = p~0F (|pz| — 1) x

~

+pt(Rs — Ri))Qus(t) | (¢ (0)fa) A For

x> T / exp(p(z — t)(Ry — Ry) + pt(Rs — Ri))Qrs(B)F, dt + o(p™),

/B'Yeﬂn k+1 ‘P‘ 1
where:
Qus(t) = D Qralt)Qast),  Qralt) = Xy |(¢" *V()fa) Aty
OcEJan k41

and the o(-) term assumes an estimate in L. (0,7"). Under the conditions of Theorem 1

the functions Qs 1 Qag (for any pair of multi-indices «, 3) are absolutely continuous.
Therefore, we have for v # f:

xT

[ explote = R, = o)+ pt(Rs = Ra))Qyatt) dt = O(p ™),

lp| =1

that yields:

=0 (o = 1) S T exp(pr(Rs — Ra)) /Qw )dtfs + o(p™").
ek ol

Substituting the obtained asymptotics to the representation (17) we arrive at:

Ti(z, p) = vi(x, p) + p 107 (|pz| — 1)

Z Tys exp(pz(Rs — Rk /Qgg ) dtfs + o(p™t). (19)

BEy i1 o1
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Here, as above, the o(-) term assumes an estimate in L,,(0,7") norm. But all the terms
in (19) are actually continuous with respect to z € (|p~!|,7). This means that the
expansion can be considered in point-wise sense as p — oo while x > 0 is arbitrary
fixed.

Now we notice that

/ Qus(t) dt — / Qs (1) dt = g ()

[p|~t

as p — oo. Then we use the representation (13) for wi(x,p) and thus we obtain the
required asymptotics. O
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YK 517.984

ACUMMNTOTUKM peLlUeHMN HEKOTOPbIX MHTEerpasnbHbIX ypaBHEHUH,
CBsi3aHHbIX ¢ auddoepeHunanbHbIMU CUCTEMaMM C OCOOEHHOCTbIO

M. KO. UrHatbeB

Nruatbes Mwuxamn KOpbeBuy, kaHOnoat OU3UKO-MaTeMaTMyeckmx Hayk, OOLEHT kadpegpsbl
mMaTeMaTnyeckon OU3MKM K BbIYUCIMTENbHONW MatemaTuku, CapaToBCKMIA HaLMOHAMbHbIN
nccnenoBaTeNnbCKMn roCynapCTBEHHbI yHMBEpcuTeT nmeHn H. . YepHbiwesckoro, Poccus,
410012, r. Capartos, yn. ActpaxaHckas, b. 83, mikkieram@gmail.com, ignatievmu@info.sgu.ru

B paboTe uayyaloTcs HEKOTOpPble acnekTbl TEOpUM pPaccesiHUs ONS CUHTYNSPHbIX CUCTEM
andgocpepeHumanbHblx ypasHeHun ' — 2~ tAy — g(z)y = pBy, * > 0 CO CrnekTpanbHbIM
napameTpoMm p, rae A, B, q(x),z € (0,00) — n X n Matpuupl, npu4yemM matpuubl A, B NOCTOSHHbI.
OCHOBHbIM NPeOMETOM WCCNENOBaHNS SBNSOTCS HEKOTOPLIE BONbTEPPOBCKME MHTErpanbHbIe
YPaBHEHUSI OTHOCUTENIbHO TEH30PHO-3HAYHBIX (OYHKUWMA. PeweHns aTux ypaBHEHWA urparT
LEeHTpanbHyl0 pofib B MOCTPOEHMM TaK Ha3blBAEMbIX PeleHnin Tuna Benns ons mMcxoOHoM
cucTeMbl auchdepeHUmnanbHbiX YpaBHEHWA. [TockonbKy Knaccuyeckue mMeTtodbl Mpu HanMymm
0COBOEHHOCTU 0Ka3blBAlOTCS HEMPUMEHUMBIMK, WU3Y4YEeHWe paccMaTpuBaeMblX WHTErpasbHbIX
YPaBHEHUA CTAHOBMTCS B 9TOM CJiydae KJ/IIOYEBbLIM 3TArNOM WCCNEOOBAHUS aHanMTUYECKMX
N acyMMNTOTUYECKMX CBOMCTB peweHuini Tuna Beins. B paHHoi pabote Mbl paccmaTtpuBaem
BaXXHbIA YaCTHbIA cnyyai, korga matpuua-gyHkums ¢(-) asnsetca rnagkoit n ¢(0) = 0. B aTom
cry4ae Ons peweHnin paccmaTpuBaeMblX MHTErpasbHbIX YPaBHEHUA yaaeTca nonyynTb acumn-
TOTUYECKMe Pa3NOXEHNS MPK p — oo C OLEHKON OCTATO4HOro 4neHa o (p~'). MonyyeHHbIi
pe3ynbTat NO3BONSET MOAYYATb aCMMOTOTUMKWM ONS peweHwid tuna Beiing, nrpatowue, B CBOIO
ouyepellb, BaXXHy0 Po/b Npw UccnenoBaHuy obpaTHo 3aaadn paccesHus.

Knro4eBbie crnoBa: ondpdpepeHunanbHble CUCTEMDI, OCOﬁeHHOCTI/I, MHTEerpasbHble ypaBHEHUA,
aACUMNTOTUYECKNE Pa3ioXXeHNs.
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