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Recovering singular differential pencils
with a turning point

V.A. Yurko

Second-order pencils of differential equations on the half-line with
turning points are considered. We establish properties of the

CBOVCTBA CMIEKTpa ¥ uccneflyeTcs 06paTHan crexTpabHas 3afava spectrum and study the inverse spectral problem of recovering

BOCCTaHOBAEHUS KOIPPULUMEHTOB NyYKa N0 CNEeKTPaibHLIM coefficients of the pencil from the spectral data.
[IaHHbIM,

1. Introduction

The paper deals with the singular indefinite non-selfadjoint boundary value problem L for the
differential equation

y"(x)+(p2r(x)+ipq1(x)+q0(x))y(x)=0, x20, (1)
on the half-line with the boundary condition
U(y)=y"(0)+(Bp+By)y(0)=0, @

where p is the spectral parameter. Let 2, @> 0, and let 7(x) =— «? for x € [0, @] and #(x) = 1 for x> q,
i.e. the weight-function r(x) changes the sign in an interior point, which is called the turning point. The
functions g/(x) are complex-valued, g,(x) is absolutely continuous, and (1+x)qj.”(x)e L(0,o) for
0 < v<j<1.The coefficients 3, and /3 are complex numbers and £, # +®. The last condition excludes
from the consideration Regge-type problems which require a separate investigation.

Differential equations with nonlinear dependence on the spectral parameter and with turning points
arise in various problems of mathematics as well as in applications (see [1]-[9] for details). In this
paper we establish properties of the spectrum of the boundary value problem L and study the inverse
problem for singular non-selfadjoint indefinite pencil (1). Inverse problems of spectral analysis con-
sist in recovering operators from their spectral characteristics. For the classical Sturm-Liouville oper-
ator the inverse problem has been studied fairly completely (see [10]-[12] and the references therein).
Some aspects of the inverse problem theory for differential pencils without turning points were stud-
ied in [13]-[19] and other works. In [20]-[25] the inverse problem was investigated for differential
equations with turning points but with linear dependence on the spectral parameter.

Indefinite differential pencils with turning point produce essential qualitative modifications in the
investigation of the inverse problem. To study the inverse problem of this kind we use the method of
spectral mappings [26] connected with ideas of the contour integral method. In Section 2 we obtain
properties of the spectral characteristics of the boundary value problem L. In Section 3 we give a
formulation of the inverse problem and prove the uniqueness theorem for the solution of this inverse
problem. A constructive procedure for the solution of the inverse problem will be given in a separate
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2. Properties of the spectral characteristics

Let ¢ (x, pyrand S(x p) be solutions of equation (1) under the initial conditions 0(0,p)=1,U(p)=0,

S(0,p) =0, S'(0, p) =1. For each fixed x > 0, the functions #™(x, p) and S™(x, p), m = 0,1 are entire
in p. Moreover,

(p(x,p),S(x,p)) =1, 3)

where (y,z) = yz - y z, since by virtue of Liouville’s formula for the Wronskian [27] (@(x, ), S(x,p))
does not depend on x.
Denote [T, :={p: £Imp >0}, II,:={p: Imp =0}. By the well-known method (see, for exam-

ple, [1], [28]-[29]) we get that for x 2 a, p € I1_, there exists a solution e(x, p) of equation (1) (which
is called the Jost-type solution) with the following properties:

1°. For each fixed x > a, the functions e™)(x, p), m = 0,1 are holomorphic for p € I, and p € I1_
(i.e. they are piecewise holomorphic).

20, The functions e™(x, p), m = 0,1 are continuous for x 2 a, pe 1, and peTl_ (we differ the
sides of the cut I1p). In other words, for real p there exist the finite limits

e (x,p)= lim e (x,2),

Moreover the functions e™(x, p), m= 0,1 are continuously differentiable with respect to p e IT, \ {0}
and pE H__ \{O}
30 For x —> o, peI1,\{0}, m=0,1,

™ (x,p) = (ip)" exp(x(ipx—QO(x)))(1+o(1)), )
where

0 =7 a0t )

4%, For| p | e, peIl,, m=0,1, uniformly in x > a.

e (x,p) = (£ip)" exp(E(ipx — Q(x))I1], ©)
where [1]:= 1+ O (o).
We extend e(x, p) to the segment [0, a] as a solution of equation (1) which is smooth for x > 0 i.e.
e (a-0,p)=¢e"(a+0,p), m=0,1. (7
Then the properties 19— 2° remain true for x > 0.

The Jost-type solution e(x, p), x = 0 is a generalization of the classical Jost solution for the Sturm-
Liouville equation (see [10]-[12]).
Denote

—_

A(p) =U(e(x, p)). (3)
The function A(p) is called the characteristic function for the boundary value problem L. The
function A(p) is holomorphic in 1, and I, and for real p there exist the finite limits

A (p)= lim_ A(z2).
z—p,zell.
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Moreover, the function A(p) is contmuously differentiable for pe I1, . \{0}..
Lemma 1. For|pl> e, pe Hi, the following asymptotical formula holds
A(p) = ECXP(i(ipa ~0(a)))((B, —w)(1Fi/ w)exp(wpa—iQ(a)/ w)[1] +
+(B, to)(1£i/ w)exp(-wpa +iQ(a)/ w)[1]). 9)

Proof. Denote IT, =={p:+Rep >0}. Let { Yo%, P) 2 x€[0,a], pe ﬁ, be the Birkhoff-type
fundamental system of solutions of equation (1) on the interval [0, a] with the asymptotics for |p|>co,
m=0,1:

" (x, p) = (=) 0p)" exp((-1)* (@px —iQ(x)/ ®))[1] (10)
(see [1], [28]-[29]). Then

e(x, p) = b (P)y:(x, P)+b,(P)y, (x,p), x€[0,a]. (11)
Using (6), (7) and (10) we obtain for p € ﬁ; ,k=0,1:

(=1)" exp(~wpa +iQ(a)/ ®)[11b,(p) + exp(wpa,—iQ(a)/ w)[1]b (p) =
= (+i/ )" exp((ipa—Q(a)))[1].
Calculating b,(p) and b,(p) from this algebraic system and substituting the result into (11), we
arrive at the following asymptotical formula for [p|»>®, pe l_'I—i m=0,1,x € [0, a]:

e (5,0) =L expitipa - 0ta)x
X ( (-D)"(1Fi/w)exp(wpa—iQ(a)/ w)exp(—wpx +iQ(x)/ w)[1]+

+(1ti/ w)exp(~wpa+iQ(a)/ w)exp(wpx—iQ(x) /@)[1]). (12)

Together with (2) and (8) this yields (9). Lemma 1 is proved. o
‘Similarly one can calculate

€(0, ) = 5 XD(£(ipa - Q@)N(1F1/0) exp(@pa—iQ(a) )[1]+
+(1ti/ w)exp(-wpa+iQ(a)/ w)[1]). (13)
Ap) = £ (ziwa®)exp(£(ipa - 0(@)) (B - @)1 i/ o) exp(opa—iQ(a)/ o)I] -
—(B, + 0)(1£i/ w)exp(-wpa +iQ(a)/ w)[1]) (14)
as |p|=>, pe I'I_i where A(p) ::diA(p).
o}
It follows from (9) that for sufficiently large |p|, the function A|p| has simple zeros of the form
pk=—1-(Kﬂi+iQ/a)+KiK1)+O(-l—), (15)
wa K

where Q: = Q(a) and
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B +o 11ni+a)_ _ (16)

x=lm

K.__
B-0’ ' 2 i—w

Here Inz :=In|z|+iarg z, arg ze [0,27). Denote
A, ={pell,:A(p)=0}, A=K UA_
Al ={peR:A,(p)=0}, A"=AJUA’,
A=A UAL A=A UA

Obviously A=A"UA”, A’ is a countable unbounded set, and A” is a bounded set.
We put

o(x,p)= 5 , a”

The function ®(x, p) is a solution of equation (1), and on account of (2), (4) and (8), also

the conditions U(®) = 1, ®(x, p) = O(exp(xipx)), x>0, p € I1. (while A(p) # 0 ). In particular,
lim,_,_ ®(x, p)=0. Denote
M(p)=2(0, p)- (18)

We will call M(p) the Weyl-type function for L since it is a generalization of the concept of the
Weyl function for the classical Sturm-Liouville operator (see [30]). It follows from (17) and (18) that

M(p)=2LP). (19)
P50
Using the conditions at the point x = 0 we get
D(x, p)=S8(x,p)+M(p)p(x, p)- (20)
It follows from (3), (17) and (20) that
(p(x,p),@(x,p)) =1, (21)
(p(x, p)se(x, p)) = Ap). (22)

Theorem 1. The Weyl-type function M(p) is holomorphic in 1, \ A’ and continuously differentia-
ble in H_i \ A,. The set of singularities of M(p) (as an analytic function) coincides with the RU A . For
Ip|_>°°s pPE Hit’

1
M(p)=———I1].
(p) p(,Bllco)[] (23)

Theorem 1 follows from (19) and from properties of the functions A(p) and (0, p).

Definition 1. The set of singularities of the Weyl-type function M(p) is called the spectrum of L
(and is denoted by o(L)). The values of the parameter p, for which equation (1) has nontrivial solu-
tions satisfying (2) and the condtion y(%) =0 (i.e. lim ... ¥(x) = 0), are called eigenvalues of L, and
the corresponding solutions are called eigenfunctions of L.

Thus, o(L) = R U A. The set A is the discrete spectrum, and R is the continuous spectrum. Note
that C\o(L) is the resolvent set of L.
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Theorem 2. L has no eigenvalues for real p # 0.
Proof. For real p 0, the functions e,(x, p) and e_(x, p) are solutions of equation (1), and in view of (4),

e.(x, p) ~ exp(X(ipx — O(x))), as x>0, (24)
Using (24) and Liouville’s formula for the Wronskian we calculate

(e, (x,p),e_(x,p))=2ip. (25)

Suppose that a real number p, # 0 is an eigenvalue, and let yy(x) be a corresponding eigen-

function. By virue of (25), the functions {e, (x,p,),e_(x,p,)} form a fundamental system of

solutions for equation (1), and consequently y,(x)=Cie, (x, p,)+C,e_(x, p). As x>0, Yo(x) ~ 0,

we have e, (x, p,) ~ exp(£(ip,x — Q(x)). But this is possible only if C; = C, =0, i.e. yo=0. Theo-
rem 2 is proved. O

Theorem 3. The countable set A’ coincides with the set {p;} of all non-zero eigenvalues of L. For
Pr € A, the functions e (x, p;) and ¢ (x, o) are eigenfunctions, and

e(x, p,) = 7,9(x,2,)> % #0. (26)

For the eigenvalues {p,} the asymptotical formula (15) holds.

Proof. Let p; € A'. Then Ule (x, py)) = A(p) = 0 and, by virtue of (4), lim ., e (x, p) = 0. Thus,
e (x, py) is an eigenfunction, and p, is an eigenvalue. Moreover, it follows from (22) that
(p(x, p,)se(x, p;)) =0, and consequently (26) is valid.

Conversely, let p; € T1, U I be an eigenvalue, and let y,(x) be a corresponding eigenfunction.
Clearly, y(0) # 0, U(yi(x)) = 0. Then y,(x)=Blo(x,p,). Since lim x»w Vi(x) = 0, one gets
v,(x) = Bie(x, p,). This yields (26). Consequently, A(py) = Ule (x, o)) =0, and ¢ (x, p) and e (x, py)
are eigenfunctions. o

Remark 1. We note that (A7 \{0}) N(A” \{0}) =, i.e. for real p= 0 the functions A, () and A_(p)
are not equal to zero simultaneously. Indeed, it follows from (8) and (25) that for real p # 0, one has

0# (e, (x,p),e_(x,p)) =e,(0,p)e (0, p)~ €. (0, p)e_(0, p) =
=e,(0,p)A_(p)—e_(0,p)A,(p).

For brevity, we confine ourselves to the case of a simple spectrum in the following sense.

Definition 2. We shall say that L has simple spectrum if all zeros of A(p) are simple, have no
finite limit points, and pM(p) = m. + o(1) as p>o FORMYLA, m.<c C.

Let L have simple spectrum. Then A" is a finite set, and A = A’ U A" is a countable set:

A = {pk}ksm'

Here o= ay U o, where @ is a finite set, o, = {k eZ: |k| >k } for some £, and the numbers p,
have the form (15) for k € &P. Each element of A’ is an eigenvalue of L. According to Theorem 2, the
points of A”\{0} are not eigenvalues of L, they are called spectral singularities of L. Thus, the discrete
spectrum A consists of two parts: the set of eigenvalues, and the set of spectral singularities.

Denote

=40:P) e Ao
M, A(pk),pke {0}. (27)

Obviously, M, # 0, and
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lim _(p=p)M(p)=M, p € AMO}. (28)
p-p, pell, .

Let

M, for p,eA

Q, =
¢ —lz-Mk for p, e A"\{0}, (29)
1 . % "
Vip)= %(M (p)—M*(p)), p € IL=R\A". (30)
where M*(p):= Hm, 6 em, M(ptiz)= e—z(fz’—pp))-. Put ap = (m, + m)/(nf) for py = 0. Using (13),

(14), (15), (27) and (29) we calculate

()

e r— —1- —>+o00
“F el g KL, (1)

Oy

By virtue of (19) and (30),

V(p)=L[e_<o,p>_e+(o,p)}pen_

2ni\ A(p) A.(p)

Taking (8) and (25) into account we infer

1
o A oA P

Definition 3. The data S := ({V'( p)}pEH AP }ie,,)» are called the speciral data of L.
The spectral data describe the behavior of the spectrum; {¥(p)} is connected with the continuous

(32)

spectrum, and {)»k, o k} e, describe the discrete spectrum. Using the results obtained above we arrive
at the following statement.

Theorem 4. The spectral data S = ({V ( p)}pen Apea k}ke ») have the following properties:

(i) pp # po for k#s; moreover, (AL \{OHN(AZ\{0}) =2;

(i,) as k ==, the asymptotical formulas (15) and (31) are valid;

(i3) the function ¥(p) is continuously differentable for p € I, and for p, € A" there exist finite
limits ¥, =lim _, , (pp )V (p); moreover,

n:x% for p, € A7 \{0}; (33)
1

(i4) as p>xe,

401
Vip)= - [2] ;
(B, Fw) (1+1/ o)
The asymptotics (34) follows from (32) and (9). Notice that relation (33) gives us a connection
between V(p), which describes the continuous spectrum, and {p, o}, which describe the discrete
spectrum.

exp(2(2opa —2iQ/ w)), (34)
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3. Formulation of the inverse problem. The uniqueness theorem

Let us go on to studying the inverse problem for the boundary value problem L. The inverse
problem is formulated as follows.

Inverse Problem 1. Given the spectral data S, construct the coefficients of the pencil (1)-(2).

In this section we prove the uniqueness theorem for the solution of this inverse problem. For this
purpose together with L we will consider a boundary value problem L of the same form but with

different coefficients 7(x), p(x), g(x), ﬁl, ﬁo. We agree that if a certain symbol o denotes an object
related to L, then & will denote the analogous object related to Z and a=a-d.
Theorem 5. If S = S, then r(x) = #(x), p(x) = p(x), q(x) = G(x) forx>0, B =l§1 and f3 =[§0. Thus,
the specification of the spectral data uniquely determines the coefficients of the pencil (1)-(2).
Proof Fix 3>0.Let x5 (p,) ={p: pe[p, —8.p, +5]}, p.€ A" Denoteby &; = R\(UpkeAﬁxo(pk))

the real axis without &~ neighbourhoods of the points of A"
Let us show that the specification of the spectral data S uniquely determines the Weyl-type func-
tion M{(p) via the formula

M(p)=Y, pakp + p(“:d#, p¢ (L), 35)
PLEA k

+o0
where the integral is understood in the principal value sense: J. = }sirrg :
=gg] s

Indeed, fix 5>0and denote G; :={p e C:|p—-p,| 28, p, € A}.It follows from (9), (13) and (19) that

IA(P)| 2 C | p | exp(lo|wa) exp(~|z|a), M (p)| < C|p[™ P € G (36)

where 6 :=Re p, r:=Im p, i.e. p= o+ ir. According to (34), the integral in (35) converges absolutely
at infinity. Moreover, in view of (15) and (31), the series in (35) converges absolutely too.

Take positive numbers R, = i # such that the circles 6, =={p:|p|=R,} lie in G for suffi-
oo

ciently small >0. Fix p ¢ o (L), and take §>0and N such that p € G, int8,. Consider the contour
integral

1 ¢ M(p)
L(p) = [ M8y, 67
2mi; p—H
with counterclockwise circuit. It follows from (36) that
lim 7, (p) =0. (38)

Marematrka 7
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For each p € A!' we take a semicircle x; (p,)={p:|p—p;|=8,p€eIl.}. Let I, be the

two-sided cut T, without the & neighbourhoods of the points of A"/, and let I'y =TT, U( U x5(p, ))

PrEA

be the contour with counterclockwise circuit (see fig.1). Denote I'; , =T ﬂHN,a, where
Ovo={p:| p| < Ry }- Contracting the contour in (37) to the real axis through the poles of A" and using
(19), (27), (29) and the residue theorem, we get

a 1 M(u)
M(p)= ) —Et—+— | ——dpu-I,(p).
pkg’ p=p, 2mi rJ pP—H !

5.8
AN

By virtue of (38) this yields as N->oo:

o 1 ¢ M(p)
Mp)= Y ——+— [=Eay
,gkp—pk 2mr{ p—u 39)
Taking (28)-(30) into account we calculate

. L M o 1 [ M@, _ VW
llmz 2__ J dy=z _k = J' - d,u—J = du.
50 p.eA” 1 Ks(py) PrHU pe P~ Py T Ha pP—H & A

Therefore, from (39) as 6> we arrive at (35).
Furthermore, it follows from (6) and (12) that for pe I1,, m=0,1,

|e“"’(x, p)‘ <C|p|" exp(lo|w(a—x))exp(—|r|a), for x<a,

m 40
e (x, p)l <C|p|" exp(-|t|a), for x2a. (40)
Using (17), (36) and (40) we conclude that for p € G5, m = 0,1,
@ (x, p)| < Clp|"” exp(=|o|@x), for x<a,
" 41)

@™ (x, p)|<Clp

" exp(~|o|@a)exp(-[r|(x~a)), for x>a.
Now we need to study the asymptotic behavior of the solution @ (x, p) as |p|—> . Using the Birkhoff-

type fundamental system of solutions {y,(x, p)},-, of equation (1) on the interval [0, ], one has
@(x, p)=a(P)y(x, p) +a,(p)y,(x, p),x€ [0,a]. (42)

Let {Y,(x,p)},_,,, x 2 a, pe II, be the Birkhoff-type fundamental system of solutions of equa-
tion (1) on the interval [a, ), with the asymptotics for p =%, m = 0,1.

7" (x, p) = (-1)""ip)" exp(=D)*P( x—iQ(x))[1]; (43)

(see [1], [28]-[29]). Then
o(x,p) = 4(P)Y (x, )+ 4,(P)Y,(x, p), x 2 a. (44)
Taking (10) and the initial conditions ¢ (0, p) = 1, ¢’ (0, p) = Bip + [ into account, we calculate

a(P]+a,(P)l]=1 (B —w)a (p)[l]+(B, +w)a,(p)[1]1=0,
and consequently,
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a1<p)[1]=“’7’;‘i[11, az(p)[1]=a’2—‘(flm, p . (45)

Substituting (10) and (45) into (42) we obtain the asymptotical formula for ¢™(x, p), m = 0,1 as
p —>, uniformly in x € [0, a]:

0™ (x, p) = 515((%,,) (@+ ) exp(-opx +iQ()/ w)[1] +

+(—wp)" (0 - B,) exp(wpx —iQ(x)/ ®)[1]). (46)
In order to calculate the coefficients 4,(p), k = 1,2, we use (43), (44), (46) and the smooth condi-
tions ™ (a—0, p) =™ (a+0, p), m = 0,1. This yields for p ->oo:

4,(p)exp(ipa— Q)]+ (-1)" 4 (p)exp(-ipa+Q)[l]1=(p)” ¢"(a,p), m=0,1,

where the asymptotics for ¢f(a, p) is taken from (46). Calculating 4,(p) from this algebraic system
and substituting the result and (43) into (44) we get for x > a, p >x:

0" (x,p)= %eXp(iP(x —a)—Q0,(x)(@+ B)1/ w+i)exp(-wpa+iQ/ w)[1]+
Hao-p,)1/w—-i)exp(wpa—-iQ/w)[1]) +

5 XP(-ip(r=a)+ 0, (N(@+ B)(1/ 0 —i) expl-opa +iQ/ o)1} +
Ho- )1/ 0 +Dexp@pa—iQ /@I, 0,0)=1[q,0d @7

It follows from (46) and (47) that

‘(P(""(x, p)‘ <C|p[" exp(|o|wx), for <x a,
m 48
'(p‘"”(x,p)l <C|p|" exp(o|wa)exp(c|&x a)), for x=a. (38)
By the assumption of Theorem 5, S = S. Hence, in view of (35),
M(p)=M(p). (49)
Using (15), (23), (31) and (49) we in M (p) = M (p) fer
B =B, 0=6,a=d, 0=0.- (50)
Let us now define the matrix P(x, p) =[P, ,(x, p)], ;- , by the formula
p(x,p) D(x, o(x,p) @(x,p)
P(x,p)[(f, - ~,( p)]=[ , . : (51)
¢'(x,p) D(x,p)| Lo (x,p) PU(x,p)

Note that the idea of applying mappings of the solution space of differential equations for study-
ing the inverse problem is due to Leibenzon [31]. By virtue of (21) this yields

Py (x,p) =" (x, )P (x, p) - D" (x, )@ (x, p),
Py (x,p) = U (x, p)(x, p) — 09~ (x. p)(x, p), (52)
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(p(xi p) = Rl(xa P)(?’(x, p)+P12(x9 p)(bd(xs p)s }

& = p 53
®(x, p) = B, (x. PYB(x, p) + Py (x. )P (x. ). 3
It follows from (41), (48) and (52) that for x > a, p € G,
B, p)<C, |By(x )| <Clp[” (54)

Using (20) and (52) we calculate

P, (x,p) =" (x, p)S'(x, p) - SY™"(x, p)§(x, p) + (M (p) -
—-M(p))p"™ (x, p)@(x, p),
P,(x,p)=S8Y"(x, p)é(x,p) 0" (x,p)S(x, p) +
+HM(p)—M(p)p"™ (x,p)(x, p).

Taking (49) into account we conclude that the functions Py (x, p) are entire in p for each fixed
x > 0. Together with (54) this yields Py, (x, p) = 0, Py; (x, p) = Py (x), i.e. the function P, does not
depend on p. By virtue of (53) we have for all x and o

B(x)¢(x, p)=@(x,p), B(x)®(x,p)=D(x,p)- (55)

Let x € [0, a]. Using (9), (12), (17), (46) and (50) we get as p =, arg p € (0, /2):
20P) _ exp(-i(0(x)~ 02/ )1], 2P = exp(i(Q(x) + Q) /a)1], (56)
@(x,p) D(x, P)

Since P; (x) does not depend on p, it follows from (55) and (56) that

P (x) = exp(—i(Q(x) - O(x))/ @)[1], B(x) = exp(i(Q(x) + O(x))/ w)[1].

and consequently, Q(x) = Q(x), Pi(x)=1 forx € [0, a].
Let x > 0. Using (6), (9), (17), (47) and (50) we have as p =, arg p € (0, n/2):

BEL) = exp(0, (01 0)1], 223 =exp(~0,9-1 0D (57

Since P; (x) does not depend on pand Q= Q., it follows from (55) and (57) that

B(x)=exp(Q,(x)), B(x)=exp(-0,(x)),

and consequently, O, (x) = Qa (x), Py(x) =1 for x > 0. Thus, P)(x) =1 and ¢,(x) =¢g,(x) for all x > 0.
According to (55) this yields $(x, p) = @(x, p), ®(x, p) = ®(x, p). Hence, g,(x) = §,(x) a.e. on (0, ®)
and S, = B,. Theorem 5 is proved. o

Corollary 1. If M(p)=M(p), then L = L.

It follows from the proof of Theorem 5 that the last assertion is also valid for pencil (1)-(2) with
arbitrary behavior of the spectrum.
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