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We consider an isotropic cylindrical shell of varying thickness and density along the generatrix. Let the shell be under pressure, which
is symmetric and also varying along the generatrix. We follow the polupostamenty theory by V. Z. Vlasov and consider the problem
of the dynamical stability of the shell. We obtain the exact solution corresponding to the certain relation between thickness, pressure
and density. Such kind of shells of extent medium is important in mechanical and aerospace engineering for optimal mass obtaining.
In the paper we obtain minimum values of the excitation coefficients for five boundary value problems, which are of great importance
in engineering. We give the accuracy estimation of the WKB method for these problems. Numerical results are summarized in the
table.
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NEAR-RESONANT REGIMES OF A STEADY-STATE MOVING LOAD
ON A TRANSVERSELY ISOTROPIC ELASTIC HALF-PLANE
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A moving load problem on a transversely isotropic elastic half-plane is considered under steady-state assumption. The approach
relies on the hyperbolic-elliptic asymptotic model for surface wave, allowing drastic simplifications. In particular, the formulation is
reduced to a Dirichlet problem for a scaled Laplace equation having a straightforward solution in terms of elementary functions. The
obtained approximate solutions are valid for loads travelling at speeds close to surface wave speed.
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1. INTRODUCTION

The practical importance of moving load problems is increasing, especially in view of the rapid
development of high-speed railway operation, see e.g. [1,2]. It is well-known, that surface wave speed
is critical for a moving load on an elastic solid, both within theoretical and experimental setup [3,4].
Therefore, analysis of the near-resonant regimes is an issue of particular significance.

This paper is concerned with analytical treatment of the near-resonant regimes of a point force moving
steadily at a constant speed along the surface of a transversely isotropic elastic half-plane. Similarly to
isotropic media, the exact solution of the problem may be expressed in integral form, see e.g. [5], which
is not straightforward for further analysis. This stimulates various approximate approaches, for example
that for soil dynamics, preserving vertical displacement only [6].

The approach of this paper relies on a recently proposed methodology related to approximate
formulation for surface wave field, see [7], and [8] for more details. This asymptotic formulation involves
a hyperbolic equation on the surface describing the wave propagation and an elliptic equation over the
interior governing the decay away from the surface, being first derived in [9] by means of the symbolic
Lourier method. Later the same result was obtained in [10] through a slow-time perturbation of the free
eigensolution in terms of a single plane harmonic function [11]. The approach was also extended to 3D
case and has been successfully applied to moving load problems [12,13]. The methodology relies on the
general assumption of dominance of surface wave field compared to that arising from the bulk waves,
which is physically justified for the case of near-resonant regimes of the moving load.

The model in [10] has also been generalized to a transversely isotropic media [14]. However, the
representation of the surface wave field for a transversely isotropic media in terms of a single harmonic
function has only become available after a recent contribution [15], which allowed drastic simplifications
of the asymptotic formulation for the surface wave field.

Similarly to results for isotropic media, the considered moving load problem reduces to a Dirichlet
problem for a scaled Laplace equation, with the boundary value provided by a ID wave equation, thus
enabling an elegant solution in terms of elementary functions. The resonant nature of the surface wave is
clearly observed from the obtained solution. The results are expected to provide reasonable approximation
in the near-surface vicinity for a range of speeds of the moving load close to that of surface wave speed.

2. STATEMENT OF THE PROBLEM

Consider a transversely isotropic hall-plane —oco < 1 < 00, 0 < 3 < oo subjected to action of a point
concentrated force moving steadily at a constant speed ¢ along the surface z3 = 0 (Figure).

)

X3

The load moving along the surface of a hali-plane
The 2D equations of motion of linear elasticity are written in standard form
011,1 + 013,3 = PU1L tt, 031,1 + 033,3 = pu3s,it, (1)

where 0;; and u; (i,j = 1,3) are the stress tensor and displacement field components, respectively, p is
volume density, and a comma indicates differentiation along the associated spatial or time variable.
The constitutive relations of a transversely isotropic solid are adopted in the form

011 = €11U1,1 + C13U3,3, 013 = 031 = Caa (U1,3 + Uu3,1), 033,3 = C13U1,1 + C33U3,3, (2)
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where ¢;; are stifiness tensor components expressed in Voigt contracted notation, see e.g. [16]. It is
assumed that the coefficients ¢;; satisly the conditions

c1 >0, cqa > 0, crie3z — ciz > 0, (3)

ensuring positive definiteness of the strain-energy density, see [17].
The boundary conditions on the surface x5 = 0 are specified in the form

J31 = 0, 033 — P()6 (.’171 — Ct) . (4)

Using the constitutive relations (2) the problem may now be reformulated in terms of displacement
components as
C11U1,11 + Caaun 33 + (C13 + Ca4) U313 = PUTL 11,

()
(13 + Ca4) U113 + Caauz 11 + C33U3 33 = PU3 41,
subject to the following boundary conditions at x3 =0
uy,3 +us1 =0, c13u1,1 + cssus gz = Pod (1 — ct). (6)

3. APPROXIMATE FORMULATION FOR THE SURFACE WAVE FIELD

Using the results of [14], it is possible to present the approximate statement of the boundary value
problem (5), (6), oriented towards extraction of the contribution of the surface wave to the overall dynamic
response, thus neglecting the effect of the bulk waves. Clearly, a load moving at a speed close to that
of surface wave speed, provides an example of surface wave field dominating those of the bulk waves,
therefore the application of the asymptotic model [14] is justified.

According to the latter, the decay over the interior of a half-plane is governed by a system of elliptic
equations

(011 - PC%) U111 + Caau1 33 + Pusz 13 = 0, (7)

Buy1s + (caa — pcg) uzan + cazuzzz =0, (8)

where 0 = ¢13+ c44. The boundary conditions on the surface x3 = 0 include a hyperbolic equation for the
horizontal displacement and a relation between the displacements, namely

uy3 +uz 1 =0, Uy gt — cpur 11 = APy (z1 — ct), 9)
with cp denoting the surface wave speed, being the root of
2
csgcasp”ch (c11 — pck) — (cas — pcg) [ess (c11 — pck) — i3] =0, (10)

see e.g. [18]. The coefficient A in the hyperbolic equation (9) is a material constant given by

1 — pc2 2
470 6\/(611 IO +pck —en | (1)
pB €33C44
where , , ) )
33 (pcr — c11) (11 — 4pck + 3caa) + i3 (c11 + caa — 2pc
B =2pch —cn + 33 (peh = en) (en — 4pck 24) 13(121 44 pR)’ 12)
2\/033044(611 — pcg,)(cas — peg)
see [14].

It should be noted that the system (7), (8) is closely related to a recent representation of a free surface
wave field in orthorhombic media [15] generalizing previous results of [11] and [19] for isotropic media.

Following [15], the eigensolution for the displacements may be written in terms of a single harmonic
function as

uy (1, 23,t) = ¢ (1 — crt, \ixg) — X (21 — crt, Aow3), (13)
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uz(wy,23,t) = 710" (v1 — crt, Mix3) — y2x@" (1 — crt, Aax3), (14)

where ¢ is an arbitrary plane harmonic function, a star superscript denotes the harmonic conjugate, \;
(i = 1,2) stand for the attenuation orders (ensuring decay as x3 — oo) determined from the characteristic
equation

C33644/\4 — [634 + c11033 — 52 — (633 + C44) pC%] A2+ (011 - pcé) (644 — pC%) =0, (15)
and ) )
Caa Ny — c11 + pch Y1 — A\ .
= 5 = ) 7 = 1’ 2 . 16
g 2y o— ( ) (16)

Using the relation (13), the boundary value problem (7)-(9) may be reduced to a scalar problem for a
plane harmonic function ¢

b33+ N1 =0 (17)
subject to the boundary condition at x3 =0

AP,

1_X5’ (x1 —ct). (18)

¢,tt - C?ﬁ),n =

The solution of the boundary value problem (17), (18) should then be substituted into representation (13),
(14) to give the resulting displacement profile of surface wave field.

4. ANALYSIS OF THE NEAR-RESONANT STEADY-STATE REGIME OF A MOVING LOAD

Let us introduce a moving coordinate & = x; — ct. The hyperbolic equation (18) then becomes

(@ - Roecle,0) = 2208, (19
from which n
1
¢(£,0) = WCS_CQR) (H(f) - 5) - (20)

A resonant nature of the surface wave is now immediately observed from (20). It should also be noted that
the constant of integration is chosen from symmetry considerations, and cannot be uniquely determined
from analysis of the steady-state regime, for more details see [20].

The solution of the Dirichlet problem for an elliptic equation (17) with boundary value (20) may now
be obtained through the Poisson integral formula [21], giving

A
o€, x3) = - X)](DSQ —2) arctan £ (21)
R

/\1‘3'

Using (13) and (14), the resulting displacement components are obtained in the form

AP, I3
t) = t - t 22
uy(x1,x3,t) A0 — &) arctan o X arctan ol (22)
AP,
us(z1,3,t) = 0 ['yl In (52 + )\%:r?,)) — yoxIn (52 + )\gxg)] . (23)

21(1 — x)(c? = %)
We note that the range of validity of the derived formulations is specified to near-resonant case only
lc — cr| < 1. (24)

However, the analysis of a transient moving load problem within isotropic framework [7] revealed that
the actual range of applicability of the obtained approximate solution is rather wide. For example, in
the sub-critical case the developed model seemed to capture qualitative behaviour up to the values of
c=0.7cg.
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5. CONCLUDING REMARKS

Analysis of the near-resonant regimes of a moving load on a transversely isotropic half-plane within
steady-state assumption has been presented. The representation of the surface wave field in terms of a
single harmonic function (13) and (14) has been employed along with the hyperbolic equation (9) arising
from the asymptotic model oriented to surface wave field only. As a result, a simple analytical solution in
terms of elementary functions has been obtained. The resonant nature of the surface wave has also been
clearly illustrated. The derived asymptotic solutions are expected to provide reasonable approximation for
loads travelling at speeds close to that of surface wave speed.

The presented approach could be extended to transient moving load problem similarly to [7]. Another
possible directions of further development are associated with 3D formulations considered in [12], and
mixed problems of elastodynamics, see [22].
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OKkonope3oHaHCHbIE PeXMMbI B CTaLMOHAPHOW 3a4a4e O NOABUXHON Harpy3ke
B C/ly4ae TpaHcBepcanbHO U30TPOMHOM YNPYroi Nonyna0CKOCTH

[. A. Mpukasuukos

Kanamnpar (PU3NKO-MaTeMaTNHECKIX HayK, NeKTop Mo I'IpI/IKl'Ia,ELHOVI maremartiike, kadpenpa maremaTtkit U KOMMbIOTEPHBIX Hayk,

Kunbckuit yHusepcuTeT, Benukobputanus, d.prikazchikov @keele.ac.uk

PaccmaTpuBaioTcst aBTOMOZENbHbIE(CTALMOHAPHbIE) PEXUMBI B 3a[a4e O MOABIKHON Harpy3ke B Clly4ae TpaHCBEpCanbHo 13o-
TPOMHOIA YNpyrol MonynaockocTh. PeleHne onMpaeTcs Ha acMNTOTUHECKYIO rnepGOMKO-MIUMTUYECKYI0 MOAENb 1St NONst
MOBEPXHOCTHOM BOMHBI, 4TO MO3BONSIET NONY4MTH CYLIECTBEHHBIE YNPOLLEHISt B OKONIOPE30HAHCHO 06nacTy. B YacTHoCTI, cpopmy-
NMPOBKa CBOAWTCS K 3afiaye Jupuxne Ans ypaBHeHus Nlannaca, UMelolueil IBHOE PeLeHie BIpaeHHOe B TepMUHAX 3NieMeHTap-
HbIX (PYHKLIA. [ony4eHHble MPUBMMKEHNS MOTYT GbiTb NCTIONB30BAHBI MPU CKOPOCTSIX Harpy3Ki, 61IM3KIX K KPUTUYECKOI CKOPOCTH

MOBEPXHOCTHON BOMHbI.

Kntoyesble coBa: OBuXylasicst HarpysKka, TPaHCBEPCasbHO M30TPOMHBIIA, OKOMO-PE30HAHCHBIIA.
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