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Non-selfadjoint second order differential systems on the line having a non-integrable regular singularity are studied. We construct
special fundamental systems of solutions with prescribed analytic and asymptotic properties. Asymptotics of the corresponding
Stockes multipliers is established.
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INTRODUCTION

Consider the Dirac system on the line with a regular singularity:
BY'(@) + (Qo(2) + Q@) )Y (2) = A\ (2),  —o00 <& < +0, (1)

where

Y(x) _ yl(gj) , B = 0 1 , Q((L’) _ 111(@ g2 :E) , QO(x) _ E 01 ,

y2(z) -1 0 @(@) —q) z \1 0
here p is a complex number, g¢;(z) are complex-valued absolutely continuous functions, and
¢;(r) € L(—o0,+00). In this short note we construct special fundamental systems of solutions for
system (1) with prescribed analytic and asymptotic properties. Behavior of the corresponding Stockes
multipliers is established. These fundamental systems of solutions will be used for studying direct and
inverse problems of spectral analysis by the contour integral method and by the method of spectral
mappings [1,2].

Differential equations with singularities inside the interval play an important role in various areas
of mathematics as well as in applications. Moreover, a wide class of differential equations with turning
points can be reduced to equations with singularities. For example, such problems appear in electronics
for constructing parameters of heterogeneous electronic lines with desirable technical characteristics
[3,4]. Boundary value problems with discontinuities in an interior point appear in geophysical models
for oscillations of the Earth [5]. The case when a singular point lies at the endpoint of the interval was
investigated fairly completely for various classes of differential equations in [6-8] and other works. The
presence of singularity inside the interval produces essential qualitative modifications in the investigation
(see [9]).

Our plan is the following. In the next section we consider a model Dirac operator with the zero
potential @(x) = 0 and without the spectral parameter. It is important that this system is studied in the
complex x-plane. We construct fundamental matrices for the model system. Using analytic continuations
and symmetry we calculate directly the Stockes multipliers for the model system. Then we consider the
Dirac system on the real z-line with Q(z) = 0 and with the complex spectral parameter, and carry over
our constructions to this system. In the last section 3 we construct fundamental matrices for system (1)
with necessary analytic and asymptotic properties. Asymptotic properties of the Stockes multipliers for
system (1) are also established.
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1. SYSTEMS WITHOUT SPECTRAL PARAMETERS

Let for definiteness, Reu > 0, 1/2 — u ¢ N. Consider the model Dirac system in the complex x-plane:
BY'(x) 4+ Qo(2)Y (z) = Y (). (2)

Let x = re’?, r > 0, p € (—m, 7], ¢ = exp(((In7 +iy)), and TI_ be the z-plane with the cut z < 0. Let
numbers c1g, co9 be such that cjgcap = 1. Then equation (2) has the matrix solution

C(z) = C(x)H(),

where

1251 . 0
H(z) = (xo x(’)‘2> , C(x) = Z$2k <$01,2k+1 2,2k ) 7

—C1,2k TC2 2k+1

k=0
Cj0 Cio
¢jok = (1) ——— Gk = (—1)F — :
2kk! T (205 + 1+ 25) 26k [T (2ps + 1 + 25)
s=0 s=0

pj = (—1)7p, j =1,2. We agree that if a certain symbol denotes a matrix solution of the system, then the
same symbol with one index denotes columns of the matrix, and this symbol with two indeces denotes

entries, for example, C'(z) = (C1(z), Ca(x)) = (gigg g;inD .

The functions ék(x), k = 1,2, are entire in x, and the functions Cy(z),k = 1,2 are regular in II_. The
functions Cy(z),k = 1,2, form the fundamental system of solutions for (2), and det C'(x) = 1. Denote

1 1 1 AT _so—iT
j 0 7 J— 0 ’ K — 0 ’ eo(z): ze. zi .
0 1 1 0 0 -1 e e "

Note that the matrix €°(z) is a solution of the system BY’(z) = Y (x).
The matrix Jost-type solution e(x) = (e1(z),e2(x)) of system (2) is constructed from the following
system of integral equations:

o(o) = iy (T 40) (@) (15 [ SO0 4 uB) et ar ) @)

1 2
where e®71(t) = (e9(t)) 71, d(z) := det (I— §Q0(:v)) =1- f—Q One can check that if e(x) is a solution
X
of equation (5), then e(x) satisfies system (2). The following theorem is proved in [10]. Denote Ry = i,
Ry = —i, zj(x) = e Fi%e;(x), 29(z) = e %el(x), j = 1,2.

Theorem 1. Equation (3) has the analytic in I1_ solution e(x) = (e1(z), e2(x)) such that
D |21(z) = 20(2)| < C/|z| for |x| = mo, argx € [—7 + o, 7;
2) |2a(x) — 28(2)| < C/|z| Jor |x| = xo, argx € [—m, ™ — o],

where the constant C depends only on xq, do, p, and xosindy > 4|yl (1 + |u|)

The matrix e(x) is a fundamental matrix for system (2), and dete(x) = 2i. For x € Dy =
= {z|argz € (0, 7|} the following relations hold

—Kes(—x) = ey (x), KCj(—z) = (—1) e "™ 0y (), j=12.

In the domain |argz| < m — §y we have two fundamental matrices; then e(z) = C(x)y° and
C(x) = e(z)3°; the matrices °, 30 are called the Stockes multipliers.

Theorem 2. For the Stockes multipliers of system (2) the following relations hold det~° = 2i,

0 _ —impi 0 A0 . —impa a0 A0 A0 (o -1
Y11 = €Iy, e = —eT 20y, 191 = (icosTu) T
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Proof. The first assertion follows from the relations dete(x) = detC(z)det~?, dete(x) = 2i,
det C(x) = 1. In order to prove the second assertion we rewrite e(z) = C(z)7° in the vector form:

e1(z) = 11101 () + 19, Ca(), e2(z) = 115C1 () + 79, Ca ().

Let « € Dy. Substututing —ax to the second relation and multiplying on (—K), we get ei(z) =

= e ™C1(2) + y3p(—eT™2)Cy(x). Therefore AP = ey, 48 = —eT'™2q5,. Since
det Y =49, - (—ei™H2)79, — et™H140 49, it follows that 9,8 = (icosmu)~L.
Theorem 2 is proved. O

Corollary. The following properties of the Stockes multipliers 3° hold:
det f% = (2i) 7, By = e Ty, By = —e~ 250, 0391855 = (4icosmp) .

Now we consider the system
BY' + Qo(x)Y = \Y (4)
for real x # 0 and complex A\. We will use a simple but important property: if Y'(x) is a solution of (2),
then Y (Ax) is a solution of (4).
Denote C(z,A) = C(zA)H(\ '), e(z,\) = e(z)). Clearly, Cj(x,\) = x“faj(x,)\), where
Cj(x,\) = Cj(zN), e;(z, A) = eBi>*2;(x)), j = 1,2. The following theorem is obvious.

Theorem 3. 1) C(x,\) is a fundamental matrix for system (4), det C(xz,\) = 1, C(x,\) is entire
in A\, and |6(x)\)| < C for each x\ from a compact set.

2) e(x, ) is a fundamental matrix for system (4), dete(z,\) = 2i, and |z;(x\) — 27| < ColzA[~" for
|| = xo, arg(zA) € [—7 + do, 7| for j =1, arg(aX) € [—m,m — 0] for j = 2, where Cy depends only
on xo, p, oo, and xgsindy = 4w|u|(1 + |p|).

3) Let e(z,)\) = C(x, \)¥°(\) and C(z,\) = e(x,\)3°(N\). Then

V) =M% BLON) =AY, k=12
2. SYSTEMS WITH THE SPECTRAL PARAMETER

Now we consider system (1) and assume that

/ |x|_2RC“|Q(x)|dx+/ 1Q(x)) dx < oo.

lz|<1 |z|>1

In this section we construct fundamental matrices for system (1) and establish properties of their Stockes
multipliers. The following assertion is proved by the well-known method (see, for example, [1, 2]).

~

Theorem 4. System (1) has a fundamental system of solutions Sj(z,\) = x"iS;(z,N), j = 1,2,
where the functions Sj(x,\) are solutions of the integral Volterra equations (5):

~

sj(x,A)zéj(x7A)+/Ox Oz, \)C1(t, A)(é)”jBQ(t)@(m) dt,  j=1,2. (5)

The functions S;(x,\) are entire in \, and |§j(x, A)| < C on compact sets.

Let us now construct the Birkhoff-type fundamental system of solutions for system (1). For definiteness,
we confine ourselves to the case z > 0. In section 2 we constructed the solution e(z, \) of equation (4)
for |zA| = xo, |arg A| < m— &g, where gy > 0, §y > 0 are such that xgsindy > 47|p|(1+ |p|). The Stockes
multipliers allow one to extend this solution by e(x, \) = C(x, \)y°(\) on II_ and z # 0. Denote

A)7TH O Al<2
pay (PG00 N [ for ] <2
0 Fy(z)) efid®  for |z | > 2|ul.

Let U%z,\) = (UY(x, \), US(z,\)) == e(x, \)F~1(a)). It is easy to check that |[U°(x,\)| < C for 2 > 0,
|arg A| < 7/2. The Birkhoff-type solutions E;(z,\), j = 1,2, of system (1) is constructed from the
following systems of integral equations:
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1) for = < ay :=2|p|/|N|

By (2.3) = ex(e.3) + e 0 (I /Omel(t,)\)BQ(t)El(t,)\) dt—Iz/

ax

e H(t, \)BQ(t)E1(t, \) dt—

_%Ige‘l(a,\,)\)Q‘l(a,\,)\)Q(a,\)El(aA,)\)), )
Es(x,\) = ea(x,\) +e(x, \) /003 e_l(t7 AN)BQ(t)Es(t, \) dt; (7)
2) for = > ay
Ey(z,)) = eq(z,\) — %Q—l(@g NQ(x)Ey(x, \) + +e(z, ) (11 /OM e Ht, \)BQ(t)Ey(t,\) dt+

+%Il /: e L (t, ) L(t, \) By (t, \) dt — %IQ /:O e Lt N L(t, \) By (t, \) dt+

5T (o V@ (0 NQ(@) Fa(ax, V), ®)
Faz, \) = e(a, \) — %Q‘l(x, NQ@) Bs (2, A) + ez, )\)(/OM e=1(t, \)BO(1) Ea(t, ) di+

% /m e~ (6, \)L(t, \) Ea(t, ) dt + %e—l(% NQ ™ (ar N)Q(ax) Bafa, ) ). 9)

A

0 0 1

where I; = ((1) 0>, Iy = (0 O>, Q(z, ) = Qo(x) — M,

L(t.3) = Q71 NQ) +Q7 (61 (Q)BR() + QUIBQ(, N + Q1 ) BQ(D))-

One can check that if E;(z, A), j = 1,2 are solutions of these systems, then they are solutions of system (1).
Denote U(z,\) = (Ui(x,\), Usz(z,N)) := E(z,\)F~(z)), where E(z,\) = (E1(z,)\), Ea2(z,))). The
following two theorems are proved by similar arguments as in [7].

Theorem 5. Systems (6)-(7) and (8)-(9) have solutions E;(xz,\), j = 1,2 for x > 0 and

Ae A = o argh € (0,7/2]}, and |Uj(x,A) — U9z, \)| < M/|A

depends on u, Q(z), Q' ().

v where the constant M

Since E(z, A) and S(z, \) are fundamental matrices of system (1), it follows that E(x, A) = S(z, \)v())
and S(x,\) = E(x, \)B(X); the matrices y(\) and B(\) are called the Stockes multipliers.

Theorem 6. The following relations hold:
D vj2(A) = Ay, §=1,2

2) 71 (A) = Mgy (1+ O(A[™)) for [N = o0, j =1,2,

where 7}; are the Stockes multipliers from e(x) = C(z)7°.

0

Corollary. |By;(A\) — 67, - A7 | < ClzA|™, k,j =1,2.

The results have been obtained in the framework of the national tasks of the Ministry of Education
and Science of the Russian Federation (project no. 1.1436.2014K) and by the Russian Foundation for

Basic Research (project no. 13-01-00134).
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