

Теорема 7. Почти комплексная структура J является интегрируемой тогда и только тогда, когда тензоры кривизны Схоутена обращаются в нуль: $R_{ab}^c = 0$, $\partial_n G_a^b = 0$.

Заметим, что как следует из теоремы 2, определенная выше структура ни при каких условиях не может быть нормальной почти контактной метрической структурой.

Библиографический список

- 1. Букушева А. В., Галаев С. В., Иванченко И. П. О почти контактных метрических структурах, определяемых связностью над распределением с финслеровой метрикой // Математика. Механика: сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2011. Вып. 13. С. 10–14.
- 2. Галаев С. В. О продолжении внутренней связности неголономного многообразия с финслеровой метрикой // Математика. Механика: сб. науч. тр. Саратов: Издво Сарат. ун-та, 2011. Вып. 13. С.25–28.
- 3. *Miron R*. Techniques of Finsler geometry in the theory of vector bundles // Acta Sci. Math. 1985. № 49. P. 119–129.
- 4. *Prasad K*. Quarter symmetric metric Finsler connections on Kenmotsu and P-Kenmotsu vector bundles // Intern. Math. Forum. 2008. Vol. 3, № 18. P. 847–855.
- 5. *Galaev S. V.* Contact structures with admissible Finsler metrics // Physical Interpretation of Relativity Theory: Proceedings of Intern. Meeting. Moscow, 4–7 July 2011. Moscow: BMSTU, 2012. P. 80–87.
- 6. *Chern S. S* Pseudogroupes continus infinis // Colloques Internat. Centre Nat. Rech. Sci. 1953. Vol. 52. P. 119–136. 7. *Gray J. W.* Some global properties of contact structures // Ann. of Math. 1959. Vol. 69, № 2. P. 421–450.
- 8. Sasaki S. On differentiable manifolds with certain structures which are closely related to almost contact structure // Tôhoku Math. J. Second Series. 1960. Vol. 12, Ne 3. P. 459-476.
- 9. *Blair D. E.* Contact manifolds in Riemannian geometry. Berlin; N. Y.: Springer-Verlag, 1976. 146 p.

- 10. *Кириченко В. Ф.* Методы обобщенной эрмитовой геометрии в теории почти контактных многообразий // Итоги науки и техники. Сер. Пробл. геом. ВИНИТИ. 1986. Т. 18. С. 25–71.
- 11. *Кириченко В. Ф., Рустанов А. Р.* Дифференциальная геометрия квази-сасакиевых многообразий // Мат. сб. 2002. Т. 193, № 8. С. 71–100.
- 12. Галаев С. В. Внутренняя геометрия метрических почти контактных многообразований // Изв. Сарат. унта. Нов. сер. 2012. Т. 12. Сер. Математика. Механика. Информатика, вып. 1. С. 16–22.
- 13. Вагнер В. В. Дифференциальная геометрия неголономных многообразий: VIII Междунар. конкурс им. Н. И. Лобачевского (1937): отчёт. Казань: Казан. физ.-мат. общ-во, 1940. 327 с.
- 14. Вагнер В. В. Геометрия (n-1)-мерного неголономного многообразия в n-мерном пространстве // Тр. семинара по векторному и тензорному анализу. М. : Издво Моск. ун-та, 1941. Вып. 5. С. 173–255.
- 15. Bejancu A. Kähler contact distributions // J. of Geometry and Physics. 2010. \mathbb{N}_{2} 60. P. 1958—1967.
- 16. Вершик А. М., Гершкович В. Я. Неголономные динамические системы. Геометрия распределений и вариационные задачи // Итоги науки и техники. Сер. Соврем. пробл. мат. Фундаментальные направления ВИ-НИТИ. 1987. Т. 16. С. 5–85.
- 17. Манин Ю. И. Калибровочные поля и комплексная геометрия. М.: Наука, 1984. 336 с.

УДК 517.984

УТОЧНЕННЫЕ АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ ДЛЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ФУНКЦИЙ СИСТЕМЫ ДИРАКА С НЕДИФФЕРЕНЦИРУЕМЫМ ПОТЕНЦИАЛОМ

М. Ш. Бурлуцкая, В. П. Курдюмов*, А. П. Хромов*

Воронежский государственный университет E-mail: bmsh2001@mail.ru
*Саратовский государственный университет

E-mail: KhromovAP@info.sgu.ru

В работе изучается система Дирака с недиффернцируемым потенциалом. Устанавливаются асимптотические формулы для собственных значений (в том числе и уточненные) и собственных функций. В качестве приложения получается теорема П. Джакова и Б. С. Митягина о базисах Рисса со скобками.

Ключевые слова: асимптотика собственных значений и собственных функций, система Дирака, базис Рисса.

Refined Asymptotic Formulas for Eigenvalues and Eigenfunctions of the Dirac System with Nondifferentiable Potential

M. Sh. Burlutskaya, V. P. Kurdyumov, A. P. Khromov

This paper investigates the Dirac system with the continuous potential. Asymptotic formulas for the eigenvalues (including refined) and eigenfunctions are established. As an application we obtain a theorem P. Dzhakova and B. S. Mityagin on the Riesz bases with brackets.

Key words: asymptotic formulas for the eigenvalues and eigenfunctions, Dirac system, Riesz bases.

ВВЕДЕНИЕ

В данной работе на отрезке [0,1] изучается система Дирака:

$$y_1'(x) - q_2(x)y_2(x) = \lambda y_1(x), \qquad y_2'(x) - q_1(x)y_1(x) = -\lambda y_2(x),$$
 (1)

с краевыми условиями

$$y_1(0) = y_2(0), y_1(1) = y_2(1).$$
 (2)

Предполагаем, что $q_j \in C[0,1]$ ($q_j(x)$ — комплекснозначные). В отличие от случая $q_j \in C^1[0,1]$ здесь приходится сталкиваться со значительными трудностями. Тем не менее, и в недифференцируемом случае также достигнуты значительные успехи. Так, в работах П. В. Джакова, Б. С. Митягина [1,2] показано, что в случае $q_j \in L_2[0,1]$ система собственных и присоединенных функций образует базис Рисса в $L_2^2[0,1]$. В работе [3], применяя метод подобных операторов, изучаются спектральные свойства задачи (1)–(2). В данной работе мы получаем уточненные асимптотические формулы для собственных значений и собственных функций (причем фактически полные асимптотические разложения) в трудном недифференцируемом случае. При этом используется достаточно элементарный и простой метод, который базируется на формулах типа операторов преобразования (см. также [4, с. 30]). В качестве приложения дается новое простое доказательство теоремы П. В. Джакова, Б. С. Митягина [2].

1. АСИМПТОТИКА СОБСТВЕННЫХ ЗНАЧЕНИЙ. ПОЛНОТА СИСТЕМЫ СОБСТВЕННЫХ И ПРИСОЕДИНЕННЫХ ФУНКЦИЙ

Асимптотика фундаментальной матрицы решений системы (1) получена в [5]. Приведем здесь другое более простое доказательство методом из [6].

Лемма 1. Система (1) в области $\operatorname{Re} \lambda \geq -h$, где h>0, при больших $|\lambda|$ имеет фундаментальную матрицу решений $Y(x,\lambda)=(y_{ij}(x))_1^2$ с асимптотикой

$$Y(x,\lambda) = (E + o(1))e^{\lambda Dx},$$

еде $E = \mathrm{diag}(1,1)$, $D = \mathrm{diag}(1,-1)$, $o(1) \to 0$ при $|\lambda| \to \infty$ равномерно по $x \in [0,1]$ и $\mathrm{arg}\,\lambda$, $y_{ij}(x)$ аналитичны по λ .

Здесь и далее для краткости у функций $y_{ij}(x)$ будем опускать аргумент λ . В дальнейшем также через E будем обозначать не только единичную матрицу, но и единичный оператор.

Доказательство. Система (1) эквивалентна системе интегральных уравнений:

$$y_1(x) = c_1 e^{\lambda x} + \int_0^x e^{\lambda(x-t)} q_2(t) y_2(t) dt, \qquad y_2(x) = c_2 e^{-\lambda x} + \int_0^x e^{-\lambda(x-t)} q_1(t) y_1(t) dt,$$

 c_1, c_2 — произвольные постоянные, из которой, положив $z_1(x) = y_1(x)e^{-\lambda x}, z_2(x) = y_2(x)e^{\lambda x}$, получим

$$z_1(x) = c_1 + \int_0^x e^{-2\lambda t} q_2(t) z_2(t) dt,$$
(3)

$$z_2(x) = c_2 + \int_0^x e^{2\lambda t} q_1(t) z_1(t) dt.$$
 (4)

Возьмем сначала в (3)-(4) $c_1 = 1$, $c_2 = 0$. Тогда, подставив (4) в (3) и изменив порядок интегрирования, имеем:

$$z_1(x) = 1 + \int_0^x e^{2\lambda t} q_1(t) z_1(t) dt \int_t^x e^{-2\lambda \tau} q_2(\tau) d\tau.$$
 (5)

По лемме 4 из [7]

$$\int_{-\infty}^{\infty} e^{-2\lambda \tau} q_2(\tau) d\tau = o(e^{-2\lambda x}) + o(e^{-2\lambda t}), \qquad \text{при} \quad |\lambda| \to \infty.$$
 (6)

Поэтому из (5) получаем $z_1(x) = 1 + \int\limits_0^x o(1)z_1(t)\,dt.$ Отсюда

$$z_1(x) = 1 + o(1). (7)$$

Подставляя (7) в (4) при $c_2=0$, согласно (6) получим $z_2(x)=o(e^{2\lambda x})$. Эту пару решений системы (3)–(4) обозначим $z_{11}(x)=z_1(x),\ z_{21}(x)=z_2(x)$.

Теперь найдем другое решение системы (3)-(4). Имеем из (3):

$$z_1(x) = c_1 + \int_0^1 e^{-2\lambda t} q_2(t) z_2(t) dt - \int_x^1 e^{-2\lambda t} q_2(t) z_2(t) dt.$$

Тогда, положив $c_1=-\int\limits_0^1e^{-2\lambda t}q_2(t)z_2(t)\,dt,\,c_2=1$, получим

$$z_1(x) = -\int_{-x}^{1} e^{-2\lambda t} q_2(t) z_2(t) dt.$$
 (8)

Подставив (8) в (4), имеем $z_2(x)=1+\int\limits_0^1 o(1)z_2(t)\,dt$. Отсюда $z_2(x)=1+o(1)$ и при подстановке в (8) получаем $z_1(x)=o(e^{-2\lambda x})$. Эту пару решений системы (3)–(4) обозначим соответственно $z_{12}(x)=z_1(x),\ z_{22}(x)=z_2(x)$. Таким образом, фундаментальная матрица для системы (3)–(4) имеет асимптотику

$$Z(x,\lambda) = (z_{ij}(x))_1^2 = \begin{pmatrix} 1 + o(1) & o(e^{-2\lambda x}) \\ o(e^{2\lambda x}) & 1 + o(1) \end{pmatrix}.$$
 (9)

Отсюда

$$Y(x,\lambda) = \begin{pmatrix} e^{\lambda x} & 0\\ 0 & e^{-\lambda x} \end{pmatrix} Z(x,\lambda) = T(x,\lambda) \begin{pmatrix} e^{\lambda x} & 0\\ 0 & e^{-\lambda x} \end{pmatrix}, \tag{10}$$

где $T(x,\lambda)=\mathrm{diag}(e^{\lambda x},e^{-\lambda x})Z(x,\lambda)\mathrm{diag}(e^{-\lambda x},e^{\lambda x}).$ На основании (9) $T(x,\lambda)=E+o(1)$ и в силу (10) получаем утверждение леммы.

Замечание. Аналогичными рассуждениями убеждаемся в справедливости леммы и при $\operatorname{Re} \lambda \leq h$. **Теорема 1.** Собственные значения краевой задачи (1)–(2) достаточно большие по модулю простые и для них имеют место асимптотические формулы:

$$\lambda_n = n\pi i + \varepsilon_n, \qquad n = \pm n_0, \pm (n_0 + 1), \dots,$$

где $\varepsilon_n \to 0$ при $n \to \infty$, n_0 — некоторое число.

Доказательство. Положим
$$\Delta(\lambda) = M_0 Y(0,\lambda) + M_1 Y(0,\lambda)$$
, где $M_0 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $M_1 = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$.

Тогда уравнение для собственных значений есть $\det \Delta(\lambda) = 0$, из которого согласно лемме 1 имеем $e^{-2\lambda} = 1 + o(1)$. Отсюда по теореме Руше получаем утверждение теоремы.

Исследуем резольвенту $R_{\lambda} = (L - \lambda E)^{-1}$ оператора

$$(Ly)(x) = (y_1'(x) - q_2(x)y_2(x), -y_2'(x) + q_1(x)y_1(x))^T, U(y) = 0,$$

где $y = y(x) = (y_1(x), y_2(x))^T$ (T - 3нак транспонирования), $U(y) = M_0 y(0) + M_1 y(1)$.

Всюду далее считаем, что $\operatorname{Re} \lambda \geq -h$ (случай $\operatorname{Re} \lambda \leq h$ рассматривается аналогично).

Лемма 2. Имеет место формула

$$R_{\lambda}f = -Y(x,\lambda)\Delta^{-1}(\lambda)U(G_{\lambda}\widetilde{f}) + G_{\lambda}\widetilde{f},$$

где $G_{\lambda}\widetilde{f}=\int\limits_{0}^{1}Y(x,\lambda)E_{0}(x,t)Y^{-1}(t,\lambda)\widetilde{f}(t)\,dt$, $E_{0}(x,t)=\mathrm{diag}(-\varepsilon(t,x),\varepsilon(x,t))$, $\varepsilon(x,t)=1$ при $t\leq x$, $\varepsilon(x,t)=0$ при t>x, $\widetilde{f}(x)=(f_{1}(x),-f_{2}(x))^{T}$, $Y(x,\lambda)$ та же, что и в лемме 1.

24 Научный отдел

Доказательство. Для $y=R_{\lambda}f$ имеем $Ly=\lambda y+f$. Отсюда

$$y'(x) - Q(x)y(x) = \lambda Dy(x) + \widetilde{f}(x), \tag{11}$$

$$U(y) = 0, (12)$$

где $Q(x) = \begin{pmatrix} 0 & q_2(x) \\ q_1(x) & 0 \end{pmatrix}$. По методу вариации произвольных постоянных общее решение системы (11) есть

$$y(x) = Y(x, \lambda)c(x), \tag{13}$$

где $c'(x) = Y^{-1}(x,\lambda)\widetilde{f}(x)$. Интегрируя первую компоненту c'(x) от x до 1, а вторую — от 0 до x (такой выбор позволяет установить ограниченность частного решения), получим

$$c(x) = c^{0} + \int_{0}^{1} E_{0}(x, t)Y^{-1}(t, \lambda)\widetilde{f}(t) dt,$$
(14)

где c^0 — произвольный постоянный вектор. Подставляя (14) в (13), имеем

$$y(x) = Y(x, \lambda)c^0 + G_{\lambda}\widetilde{f}.$$

Подчинив теперь y(x) краевому условию (12), придем к утверждению леммы.

Лемма 3. Обозначим через S_δ область, получающуюся из λ -плоскости удалением всех чисел $\lambda_n^0=n\pi i$ вместе с круговыми окрестностями одного и того же радиуса δ . Тогда в S_δ при больших $|\lambda|$

$$R_{\lambda}f = \int_0^1 O(1)f(t) dt,$$

 $cde\ O(1)$ означает матрицу с элементами, имеющими оценку O(1) по λ , равномерную относительно остальных аргументов.

Доказательство. Пусть $\text{Re }\lambda \geq -h$. Тогда по лемме 1 $Y(x,\lambda) = [E]Y_0(x,\lambda), Y^{-1}(x,\lambda) = Y_0^{-1}(x,\lambda)[E]$, где $Y_0(x,\lambda) = \text{diag}(e^{\lambda x},e^{-\lambda x}), [E] = E + o(1)$ и o(1) есть матрица с компонентами $o(1) \to 0$ при $|\lambda| \to \infty$ равномерно по $x \in [0,1]$. Тогда имеем

$$Y(x,\lambda)E_0(x,t)Y^{-1}(t,\lambda) = [E]Y_0(x,\lambda)E_0(x,t)Y_0^{-1}(t,\lambda)[E] =$$

$$= [E]\operatorname{diag}(-\varepsilon(t,x)e^{\lambda(x-t)},\varepsilon(x,t)e^{-\lambda(x-t)})[E] = O(1).$$

Поэтому $G_{\lambda}\widetilde{f} = \int\limits_{0}^{1} O(1) \mathrm{diag}(1,-1) f(t) \, dt = \int\limits_{0}^{1} O(1) f(t) \, dt$. Далее, в S_{δ} имеем $|\det \Delta(\lambda)| \geq c |e^{\lambda}|$ (через c в дальнейшем обозначаем различные положительные постоянные, встречающиеся в оценках). Отсюда, $\Delta^{-1}(\lambda) = \begin{pmatrix} O(e^{-\lambda}) & O(e^{-\lambda}) \\ O(1) & O(1) \end{pmatrix}$. Значит, $Y(x,\lambda)\Delta^{-1}(\lambda) = O(1)$, и тем самым утверждение леммы

получено при $\operatorname{Re}\lambda\geq -h$. Случай $\operatorname{Re}\lambda\leq -h$ рассматривается аналогично.

Теорема 2. Системы собственных и присоединенных функций (с.п.ф.) операторов L и L^* полны в пространстве $L^2_2[0,1]$.

Доказательство. Пусть f ортогональна всем с.п.ф. оператора L^* . Тогда $R_\lambda f = R_\lambda(L)f$ есть целая функция по λ и по теореме Лиувилля в силу леммы 3 $R_\lambda f$ не зависит от λ . Значит, если $\mu_1 \neq \mu_2$, то $R_{\mu_1}f = R_{\mu_2}f$. А тогда $R_{\mu_1}R_{\mu_2}f = \frac{R_{\mu_1}f - R_{\mu_2}f}{\mu_1 - \mu_2} = 0$. Отсюда f(x) = 0 почти всюду, и полнота системы с.п.ф. оператора L^* установлена.

Установим полноту системы с.п.ф. оператора L. Имеем:

$$L^*z = (-z_1'(x) + \overline{q_1(x)}z_2(x), z_2'(x) - \overline{q_2(x)}z_1(x))^T, \qquad U(z) = 0.$$

Поэтому для $R_{-\lambda}(L^*) = (L^* + \lambda E)^{-1}$ справедлива лемма 3, и полнота системы с.п.ф. оператора L получается вышеприведенными рассуждениями.

2. УТОЧНЕННАЯ АСИМПТОТИКА СОБСТВЕННЫХ ЗНАЧЕНИЙ

Для получения уточненной асимптотики собственных значений нам потребуется иная система решений системы Дирака, имеющая представление типа операторов преобразования. В отличие от параграфа 1 всюду далее будем обозначать через $(z_{11}(x), z_{21}(x))^T$ решение системы (3)–(4) при $c_1 = 1$, $c_2 = 0$, а через $(z_{21}(x), z_{22}(x))^T$ — решение системы (3)–(4) при $c_1 = 0$, $c_2 = 1$. Пусть $c_1 = 1$, $c_2 = 0$. Подставив (4) в (3), получим

$$z_{11}(x) = 1 + \int_{0}^{x} e^{-2\lambda t} q_2(t) dt \int_{0}^{t} e^{2\lambda \tau} q_1(\tau) z_{11}(\tau) dt.$$
 (15)

Лемма 4. Для решения $z_{11}(x)$ уравнения (15) имеет место формула

$$z_{11}(x) = 1 + \int_{0}^{x} e^{-2\lambda\xi} K_{11}(x,\xi) d\xi, \tag{16}$$

где $K_{11}(x,\xi) = \sum_{n=1}^{\infty} K_{11,n}(x,\xi)$,

$$K_{11,n}(x,\xi) = \int_{0}^{x} q_{2}(t_{1}) dt_{1} \int_{0}^{x} \varepsilon(t_{1},t_{2}) q_{1}(t_{2}) dt_{2} \cdots \int_{0}^{x} \varepsilon(t_{2n-3},t_{2n-2}) q_{1}(t_{2n-2}) dt_{2n-2} \int_{0}^{x} \varepsilon(t_{2n-2},t_{2n-1}) \times \varepsilon(\xi,t_{2n}(\xi)+\xi-t_{2n-1}) \varepsilon(t_{2n}(\xi)+\xi,\xi) q_{2}(t_{2n-1}) q_{1}(t_{2n}(\xi)) dt_{2n-1},$$

$$(17)$$

 $t_{2n}(\xi)=t_1-t_2+t_3-\cdots+t_{2n-1}-\xi$, $K_{11}(x,\xi)$ не зависит от λ , и

$$|K_{11,n}(x,\xi)| \le (M_1 M_2)^n \frac{x^{2n-2}}{(2n-2)!}, \qquad M_j = \max_x |q_j(x)|.$$
 (18)

Доказательство. Решая уравнение Вольтерра (15) методом подстановок, получим

$$z_{11}(x) = 1 + \sum_{n=1}^{\infty} A_n(x, \lambda), \tag{19}$$

где

$$A_{n}(x,\lambda) = \int_{0}^{x} q_{2}(t_{1})e^{-2\lambda t_{1}} dt_{1} \int_{0}^{t_{1}} q_{1}(t_{2})e^{2\lambda t_{2}} dt_{2} \cdots$$

$$\cdots \int_{0}^{t_{2n-2}} q_{2}(t_{2n-1})e^{-2\lambda t_{2n-1}} dt_{2n-1} \int_{0}^{t_{2n-1}} q_{1}(t_{2n})e^{2\lambda t_{2n}} dt_{2n}.$$
(20)

В (20) все экспоненты внесем в последний интеграл и в нем выполним замену $\xi = t_1 - t_2 + t_3 - \cdots - t_{2n}$. Очевидно, что $\xi \in [0, x]$. Используя функцию $\varepsilon(x, t)$, придем к выражению

$$A_{n}(x,\lambda) = \int_{0}^{x} q_{2}(t_{1}) dt_{1} \int_{0}^{x} \varepsilon(t_{1},t_{2})q_{1}(t_{2}) dt_{2} \cdots \int_{0}^{x} \varepsilon(t_{2n-3},t_{2n-2})q_{1}(t_{2n-2}) dt_{2n-2} \int_{0}^{x} \varepsilon(t_{2n-2},t_{2n-1}) \times q_{2}(t_{2n-1}) dt_{2n-1} \int_{0}^{x} \varepsilon(\xi,t_{2n}(\xi)+\xi-t_{2n-1})\varepsilon(t_{2n}(\xi)+\xi,\xi)q_{1}(t_{2n}(\xi))e^{-2\lambda\xi} d\xi,$$

откуда, меняя порядок интегрирования (переводя последний интеграл на первое место), получим

$$A_n(x,\lambda) = \int_{-\infty}^{x} e^{-2\lambda\xi} K_{11,n}(x,\xi) d\xi.$$

26 Научный отдел

Освобождаясь в (17) от $\varepsilon(\cdot,\cdot)$ во всех интегралах, кроме последнего, легко получим оценку (18) для $K_{11}(x,\xi)$, из которой следует равномерная сходимость ряда $\sum_{n=1}^{\infty} K_{11,n}(x,\xi)$. Тем самым формула (16) доказана.

Лемма 5. Для $z_{21}(x)$ имеет место формула

$$z_{21}(x) = \int_{0}^{x} e^{2\lambda\xi} K_{21}(x,\xi) d\xi, \tag{21}$$

еде $K_{21}(x,\xi) = q_1(\xi) + \int_{\xi}^{x} q_1(\tau) K_{11}(\tau,\tau-\xi) d\tau.$

Доказательство. Формула (21) получается подстановкой (19) в (4) при $c_2 = 0$.

Аналогично леммам 4 и 5 доказывается

Лемма 6. Имеют место формулы:

$$z_{12}(x) = \int_{0}^{x} e^{-2\lambda\xi} K_{12}(x,\xi) d\xi, \qquad z_{22}(x) = 1 + \int_{0}^{x} e^{2\lambda\xi} K_{22}(x,\xi) d\xi,$$

еде K_{22} получается из K_{11} , меняя q_1 на q_2 , q_2 на q_1 , а K_{12} — из K_{21} , меняя q_1 на q_2 и K_{11} на K_{22} . Всюду далее будем считать, что $Y(x,\lambda)=(y_{ij}(x))_1^2$, где $y_{1j}(x)=z_{1j}(x)e^{\lambda x}$, $y_{2j}(x)=z_{2j}(x)e^{-\lambda x}$ (j=1,2). Тогда имеем:

$$\Delta(\lambda) = M_0 Y(0, \lambda) + M_1 Y(1, \lambda) = \begin{pmatrix} 1 & -1 \\ z_{11}(1)e^{\lambda} - z_{21}(1)e^{-\lambda} & z_{12}(1)e^{\lambda} - z_{22}(1)e^{-\lambda} \end{pmatrix},$$

и уравнение $\det \Delta(\lambda) = 0$ для собственных чисел задачи (1)–(2) имеет вид

$$e^{2\lambda} = (1 + g_1(\lambda))(1 + g_2(\lambda))^{-1},$$
 (22)

где
$$g_1(\lambda)=\int\limits_0^1a_1(\xi)e^{2\lambda\xi}\,d\xi, \quad g_2(\lambda)=\int\limits_0^1a_2(\xi)e^{-2\lambda\xi}\,d\xi, \quad a_1(\xi)=K_{21}(1,\xi)+K_{22}(1,\xi),$$
 $a_2(\xi)=K_{11}(1,\xi)+K_{12}(1,\xi).$

Будем обозначать одним и тем же α_n произвольные числа, лишь бы $\sum |\alpha_n|^2 < \infty$; через β_n — такие α_n , которые можно точно вычислить.

Лемма 7. При $\lambda = \lambda_n = n\pi i + \varepsilon_n$ справедливы следующие асимптотические формулы:

$$1 + g_1(\lambda_n) = 1 + \beta_{n,1} + \beta_n \varepsilon_n + O(\varepsilon_n^2), \tag{23}$$

$$(1 + g_2(\lambda_n))^{-1} = 1 - \beta_{n,2} + \alpha_n \varepsilon_n + \alpha_n^2 \varepsilon_n + O(\varepsilon_n^2), \tag{24}$$

 $ede\ eta_{n,1}=(a_1(\xi),e^{-2n\pi i\xi}),\ eta_{n,2}=(a_2(\xi),e^{2n\pi i\xi}),\ (\cdot,\cdot)$ — скалярное произведение в $L_2[0,1]$.

Доказательство. Формула (23) сразу следует из равенства

$$g_1(\lambda_n) = \int_0^1 a_1(\xi) e^{2n\pi i \xi} e^{2\xi \varepsilon_n} d\xi = \int_0^1 a_1(\xi) e^{2n\pi i \xi} (1 + 2\xi \varepsilon_n) d\xi + O(\varepsilon_n^2).$$
 (25)

Далее, имеем

$$(1+g_2(\lambda_n))^{-1} = \left(1 + \int_0^1 a_2(\xi)e^{-2n\pi i\xi}(1-2\xi\varepsilon_n)\,d\xi + O(\varepsilon_n^2)\right)^{-1} = \frac{1}{1+r_n}\,,$$

где $r_n = \beta_{n,2} + \beta_n \varepsilon_n + O(\varepsilon_n^2)$. Окончательно получаем

$$\frac{1}{1+r_n} - 1 + 1 = 1 - \frac{\beta_{n,2}}{1+r_n} + \alpha_n \varepsilon_n + O(\varepsilon_n^2) = 1 - \beta_{n,2} \left[1 - \frac{\beta_{n,2}}{1+r_n} + \alpha_n \varepsilon_n + O(\varepsilon_n^2) \right] + \alpha_n \varepsilon_n + O(\varepsilon_n^2) = 1 - \beta_{n,2} + \alpha_n \varepsilon_n + \alpha_n^2 + O(\varepsilon_n^2),$$

что и доказывает (24).

Теорема 3. Для собственных значений λ_n имеют место асимптотические формулы:

$$\lambda_n = n\pi i + \beta_{n,0} + \alpha_n^2, \qquad (n = \pm n_0, \pm (n_0 + 1), \ldots),$$
 (26)

 $e\partial e \ \beta_{n,0} = \frac{1}{2}(\beta_{n,1} - \beta_{n,2}).$

Доказательство. Из (22) по лемме 7 имеем $e^{2\lambda_n}=e^{2\varepsilon_n}=1+x_n$, где $x_n=2\beta_{n,0}+\alpha_n\varepsilon_n+\alpha_n^2+O(\varepsilon_n^2)$. Отсюда

$$\varepsilon_n = \frac{1}{2}\ln(1+x_n) = \beta_{n,0} + \alpha_n \varepsilon_n + \alpha_n^2 + O(\varepsilon_n^2). \tag{27}$$

Из (27) получаем, что $\varepsilon_n = \alpha_n$ и тогда, опять используя (27), находим $\varepsilon_n = \beta_{n,0} + \alpha_n^2$. Теперь формула (26) сразу следует из теоремы 1.

Замечание. Если вместо (25) взять

$$g_1(\lambda_n) = \int_0^1 a_1(\xi) e^{2\pi n i \xi} \left(1 + 2\xi \varepsilon_n + \dots + \frac{(2\xi \varepsilon_n)^m}{m!} \right) d\xi + O(\varepsilon_n^{m+1})$$

и аналогичное выражение для $g_2(\lambda_n)$, то для ε_n вместо (27) получим

$$\varepsilon_n = \beta_{n,0} + \beta_n \varepsilon_n + \dots + \beta_n \varepsilon_n^m + \alpha_n^{m+1} + O(\varepsilon_n^{m+1}),$$

что приводит к $\varepsilon_n=\gamma_{n,m}+\alpha_n^{m+1}$, где $\gamma_{n,m}$, в свою очередь, точно вычисляются и $\sum |\gamma_{n,m}|^2<\infty$.

3. АСИМПТОТИКА СОБСТВЕННЫХ ФУНКЦИЙ

В этом параграфе получим уточненную асимптотику собственных функций задачи (1)-(2). Из лемм 4-6 и формулы

$$\int_{0}^{x} e^{\lambda(x-2\xi)} f(\xi) d\xi = \frac{1}{2} \int_{-x}^{x} e^{\lambda \tau} f((x-\tau)/2) d\tau = \frac{1}{2} \left[\int_{0}^{x} e^{\lambda \tau} f((x-\tau)/2) d\tau + \int_{0}^{x} e^{-\lambda \tau} f((x+\tau)/2) d\tau \right]$$

следует утверждение

Лемма 8. Имеют место формулы:

$$Y(x,\lambda) = (y_{ij}(x))_1^2 = \operatorname{diag}(e^{\lambda x}, e^{-\lambda x}) + \int_0^x M(x,\tau)e^{\lambda \tau} d\tau + \int_0^x N(x,\tau)e^{-\lambda \tau} d\tau,$$

ede $M(x,\tau)=(M_{ij}(x,\tau))_1^2$, $N(x,\tau)=(N_{ij}(x,\tau))_1^2$, $M_{ij}=\frac{1}{2}K_{ij}(x,\xi_i)$, $\xi_1=(x-\tau)/2$, $\xi_2=(x+\tau)/2$, $N_{ij}=\frac{1}{2}K_{ij}(x,\xi_i^*)$, $\xi_1^*=(x+\tau)/2$, $\xi_2^*=(x-\tau)/2$.

Теорема 4. Для собственных функций $\varphi_n(x) = (\varphi_{n1}(x), \varphi_{n2}(x))^T$ задачи (1)-(2), соответствующих собственным значениям λ_n , имеют место асимптотические формулы:

$$\varphi_{nj}(x) = e^{p_j n \pi i x} (1 + p_j \beta_n x) + \int_0^x S_j(x, \tau) (1 + \beta_n \tau) e^{n \pi i \tau} d\tau + \int_0^x T_j(x, \tau) (1 - \beta_n \tau) e^{-n \pi i \tau} d\tau + O(\alpha_n^2), \qquad j = 1, 2,$$

где $p_1=1$, $p_2=-1$, $S_j(x,\tau)=M_{j1}(x,\tau)+M_{j2}(x,\tau)$, $T_j(x,\tau)=N_{j1}(x,\tau)+N_{j2}(x,\tau)$, j=1,2. Оценка $O(\alpha_n^2)$ равномерна по $x\in[0,1]$.

Доказательство. Из условий (2) следует, что при $\lambda=\lambda_n$ имеем $\varphi_{n1}(x)=y_{11}(x)+y_{12}(x)$, $\varphi_{n2}(x)=y_{21}(x)+y_{22}(x)$. По лемме 8

$$\varphi_{n1}(x) = e^{\lambda_n x} + \int_0^x S_1(x,\tau)e^{\lambda_n \tau} d\tau + \int_0^x T_1(x,\tau)e^{-\lambda_n \tau} d\tau.$$
 (28)

28 Научный отдел

Так как по теореме 3 $\lambda_n = n\pi i + \beta_{n,0} + \alpha_n^2$ и для ограниченной $f(x,\tau)$ имеет место формула

$$\int_{0}^{x} e^{\pm \lambda_n \tau} f(x,\tau) d\tau = \int_{0}^{x} e^{\pm n\pi i \tau} f(x,\tau) d\tau \pm \beta_{n,0} \int_{0}^{x} e^{\pm n\pi i \tau} f(x,\tau) \tau d\tau + O(\alpha_n^2), \tag{29}$$

то из (28) легко следует утверждение теоремы для $\varphi_{n1}(x)$. Формула для $\varphi_{n2}(x)$ получается аналогично.

Замечание. Если взять $\varepsilon_n = \gamma_{n,m} + \alpha_n^{m+1}$ из замечания к теореме 3, то получим более точную асимптотику для $\varphi_n(x)$ с остаточным членом $O(\alpha_n^{m+1})$.

4. БАЗИСНОСТЬ ПО РИССУ СИСТЕМЫ СОБСТВЕННЫХ ФУНКЦИЙ

В качестве приложения теорем 3 и 4 получается теорема П. В. Джакова, Б. С. Митягина [2] для $q_i \in C[0,1]$.

Теорема 5. Система собственных и присоединенных функций задачи (1)-(2) образует базис Рисса в $L_2^2[0,1]$.

Доказательство. По теореме 4 для любой $f \in L^2_2[0,1]$ очевидно, что $(f,\varphi_n) = \alpha_n$. Для собственных функций φ_n^* сопряженной краевой задачи имеет место результат, схожий с теоремой 4, и поэтому $(f,\varphi_n^*) = \alpha_n$. Кроме того, $(\varphi_n,\varphi_n^*) = 2 + o(1)$. Отсюда, из теоремы 2 и теоремы Бари [8, с. 374–375] получаем утверждение теоремы.

Замечание. Все приведенные в работе утверждения справедливы и в случае $q_j \in L_2[0,1]$. При этом следует учесть, что оценка (18) переходит в

$$|K_{11,n}(x,\xi)| \le \frac{\|q_1\| \cdot \|q_2\|}{(2n-2)!} \left(\int_0^x (|q_1(t)| + |q_2(t)|) dt \right)^{2n-2}.$$
(30)

Действительно, представим $K_{11,n}(x,\xi)$ из леммы 4 в виде

$$K_{11,n}(x,\xi) = \int_{0}^{x} q_{2}(t_{1}) dt_{1} \int_{0}^{t_{1}} q_{1}(t_{2}) dt_{2} \cdots \int_{0}^{t_{2n-3}} q_{1}(t_{2n-2}) dt_{2n-2} \times \int_{0}^{t_{2n-2}} \varepsilon(\xi, t_{2n}(\xi) + \xi - t_{2n-1}) \varepsilon(t_{2n}(\xi) + \xi, \xi) q_{2}(t_{2n-1}) q_{1}(t_{2n}(\xi)) dt_{2n-1}.$$

Так как

$$|K_{11,n}(x,\xi)| \le ||q_1|| \cdot ||q_2|| \int_0^x (|q_1(t_1)| + |q_2(t_1)|) dt_1 \cdots \int_0^{t_{2n-3}} (|q_1(t_{2n-2})| + |q_2(t_{2n-2})|) dt_{2n-2}, \tag{31}$$

то используя для $Q(t) = |q_1(t)| + |q_2(t)|$ формулу

$$\int_{0}^{x} Q(t_1) dt_1 \int_{0}^{t_1} Q(t_2) dt_2 \cdots \int_{0}^{t_{2n-3}} Q(t_{2n-2}) dt_{2n-2} \le \frac{1}{(2n-2)!} \left(\int_{0}^{x} Q(t) dt \right)^{2n-2},$$

из (31) сразу получим (30). Кроме того, следует учесть, что функции $K_{11}(x,\xi)$, $K_{22}(x,\xi)$, $K_{12}(x,\xi)-q_2(\xi)$, $K_{21}(x,\xi)-q_1(\xi)$ ограничены, и формула (29) остается справедливой и когда $f(x,\tau)$ есть $q((x+\tau)/2)$ или $q((x-\tau)/2)$, $q(x)\in L_2[0,1]$.

Результаты параграфов 1 и 3 получены M. Ш. Бурлуцкой, параграфа 2-A. П. Хромовым, параграфа 4- всеми авторами этой статьи.

Работа выполнена при финансовой поддержке РФФИ (проект 10-01-00270).

Библиографический список

- 1. Джаков П. В., Митягин Б. С. Зоны неустойчивости одномерных периодических операторов Шредингера и Дирака // УМН. 2006. Т. 61, № 4. С. 77–182.
- 2. *Djakov P., Mityagin B.* Bari-Markus property for Riesz projections of 1D periodic Dirac operators // Math. Nachr. 2010. Vol. 283 (3). P. 443-462.
- 3. *Баскаков А. Г., Дербушев А. В., Щербаков А. О.* Метод подобных операторов в спектральном анализе несамосопряженного оператора Дирака с негладким потенциалом // Изв. РАН. Сер. математическая. 2011. Т. 75, № 3. С. 3–28.
- 4. *Марченко В. А.* Операторы Штурма–Лиувилля и их приложения. Киев: Наук. думка, 1977. 340 с.
- 5. Бурлуцкая М. Ш. Об асимптотике решения одного дифференциального уравнения первого порядка с

непрерывным потенциалом // Современные методы теории краевых задач : материалы Воронеж. весенней мат. шк. «Понтрягинские чтения XXI». Воронеж : Издат. полиграф. центр Воронеж гос. ун-та, 2010. С. 3–9.

- 6. *Хромов А. П.* Об асимптотике решений уравнения Дирака // Современные методы теории функций и смежные проблемы : материалы Воронеж. зимней мат. шк. Воронеж : Изд.-полиграф. центр Воронеж гос. унта, 2011. С. 346–347.
- 7. *Хромов А. П.* Теоремы равносходимости для интегродифференциальных и интегральных операторов // Мат. сб. 1981. Т. 114 (156), № 3. С. 378–405.
- 8. Гохбере И. Ц., Крейн М. Г. Введение в теорию линейных несамосопряженных операторов. М. : Наука, 1965. 445 с.

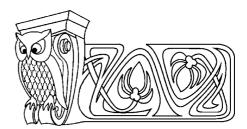
УДК 517.51

ФУНКЦИИ ЛЕБЕГА ПО СИСТЕМЕ ХААРА НА НУЛЬ-МЕРНЫХ КОМПАКТНЫХ ГРУППАХ

Саратовский государственный университет E-mail: NataliyaKomissarov@yandex.ru

На компактной нуль-мерной группе $(G,\dot+)$ рассматриваются функции Лебега по системе Хаара. Указываются случаи, когда они являются постоянными, а также получаются двусторонние оценки для функций Лебега.

Ключевые слова: компактные нуль-мерные группы, функции Хаара, функции Лебега.



Lebesgue Functions for Haar System on Compact Zero-Dimensional Group

N. E. Komissarova

In this article we discuss Lebesgue functions for Haar system on compact zero-dimensional group. We find cases when they are constant, also we find two-sided estimates for Lebesgue functions.

Key words: compact zero-dimensional group, Haar functions, Lebesgue functions.

1. ВВОДНЫЕ ЗАМЕЧАНИЯ

Из [1] известно, что для констант Лебега L_N по системе характеров компактной нуль-мерной группы G справедливо неравенство $L_N \leq C \log N$. С. Ф. Лукомским в работе [2] были получены двусторонние оценки констант Лебега, причём в случае $p_n \leq p$ одинаковые по порядку. В [3] Б. И. Голубов рассматривал на отрезке [0,1] класс полных ортогональных систем X, построенных по последовательности чисел $P=(p_n)_{n=0}^\infty$. Для функций Лебега $L_M(x), M=jm_N+q$ по таким системам получил оценку сверху $L_M(x) \leq C \log p_N$. Функции Хаара на произвольной нуль-мерной компактной группе G были определены в работе [4]. Причём если отобразить группу G на отрезок [0,1] с помощью естественного отображения, то функции Хаара, определённые в [4] на нуль-мерной группе с точностью до меры нуль, совпадают с функциями из [3]. В данной работе изучаются функции Лебега по системе Хаара на компактной нуль-мерной группе и даются для них двусторонние оценки

Пусть $(G,\dot{+})$ — нуль-мерная компактная абелева группа, топология в которой задана системой вложенных подгрупп $G=G_0\supset G_1\supset\cdots\supset G_n\supset G_{n+1}\supset\ldots$ таких, что $\bigcap_{n=0}^\infty G_n=\{0\}$, $(G_n/G_{n+1})^\sharp=p_n$, где p_n — простые числа; μ — мера Хаара на G. Положим $m_0=1$, $m_{n+1}=p_nm_n$. Пусть далее $(g_n)_{n=0}^\infty$ — базисная последовательность, т. е. $g_n\in G_n\backslash G_{n+1}$. Напомним, что непрерывная функция $\chi:G\to\mathbb C$ называется характером, если 1) для всех $x\in G$ выполняется $|\chi(x)|=1$, (2) $\chi(x\dot{+}y)=\chi(x)\chi(y)$.