
V. A. Kovalev et al. On weak discontinuities and jump equations

mat. nauk [Issues of numerical implementation of the

method consistent perturbation parameters when calcu-

lating shell designs : Dr. phys. and math. sci. diss.].

Saratov, 2005. (in Russian).

5. Kuznecov V. N. Metod posledovatel’nogo vozmush-
cheniia parametrov v prilozhenii k raschetu dina-
micheskoi ustoichivosti tonkostennykh obolochechnykh
konstruktsii : Diss. kand. tehn. nauk [The method

of successive perturbations of the parameters in the

application to the calculation of dynamic stability of thin-

walled shell structures : Dr. techn. sci. diss.]. Saratov,

2000 (in Russian).

6. Bessonov L. V. Chislennaia realizatsiia algoritma

spektral’nogo kriteriia lokal’noi poteri ustoichivosti

obolochechnoi konstruktsi [Numerical realization of

algorithm of spectral criterion of local buckling of

shell structures]. Issledovaniia po algebre, teorii chisel,
funktsional’nomu analizu i smezhnym voprosam :
mezhvuz. sb. nauch. tr. [Research in algebra, number

theory, functional analysis and related issues : inter-

university collection of scientific papers], Saratov, Saratov

Univ Press, 2012, iss. 7, pp. 3–9.

7. Pisarenko G. S., Jakovlev A. P., Matveev V. V.

Spravochnik po soprotivleniiu materialov [The reference

resistance of materials]. Kiev, Naukova dumka, 1988,

734 p.

ON WEAK DISCONTINUITIES AND JUMP EQUATIONS ON WAVE SURFACES
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The present study is devoted to problem of propagating surfaces of weak and strong discontinuities of translational displacements,

microrotations and temperature in micropolar (MP) thermoelastic (TE) continua. Problems of propagation of weak discontinuities in

type-I MPTE continua are discussed. Geometrical and kinematical compatibility conditions due to Hadamard and Thomas are used

to study possible wave surfaces of weak discontinuities. Weak discontinuities are discriminated according to spatial orientations of

the discontinuities polarization vectors (DPVs). It is shown that the surfaces of weak discontinuities can propagate exist without

weak discontinuities of the temperature field. Second part of the paper is concerned the discussions of the propagating surfaces of

strong discontinuities of field variables in type-II MPTE continua. Constitutive relations for hyperbolic thermoelastic type-II micropolar

continuum is derived by the field theory. The special form of the first variation of the action integral is used in order to obtained

4-covariant jump conditions on wave surfaces. Three-dimensional form of the jump conditions on the surface of a strong discontinuity

of thermoelastic field are derived from 4-covariant form.

Key words: micropolar thermoelasticity, type-I continuum, type-II continuum, weak discontinuity, strong discontinuity, shock wave,

longitudinal wave, transverse wave, compatibility condition, jump.

1. PRELIMINARY REMARKS

Problems of micropolar continua take its origin from the classical E. and F. Cosserat’s paper [1].

Micropolar (MP) continuum theories include not only translational displacements but also additional

degrees of freedom. These degrees of freedom are coupled with changes in reper (three directors)

associated with microvolume. Such changes may be described by a rotation vector when reper associated

with microvolume are rigid rotated. In contrary to conventional elasticity a continuum with microstucture

is described by the asymmetric strain and stress tensors known from many previous discussions. Thus

the asymmetric elastic theory is characterized by a comparatively large number of constitutive elastic

constants need to be determined from the experimental observations. There are several phenomena (for

example, the anomalous piezoelectric effect in quartz, the dispersion of elastic waves, as well as a number

of other experimentally observed elastic properties of the pure crystals) being beyond the scope of the

conventional thermoelasticity (CTE) and piezoelectroelasticity. That is why a development of complex

theories seems to be actual.

The type-I micropolar thermoelastic (MPTE-I) continuum may be described in terms of field

formalism, for example, from positions of the Green–Naghdi thermoelasticity (GN-theory). Now such

mathematical frameworks of the thermoelastic behavior of solids are rapidly refined [2,3]. They are

based on different modifications of the classical Fourier law of heat conduction. The refinements aim

at derivations of hyperbolic partial differential equations of coupled thermoelasticity. Those are to
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simultaneously fulfill the following conditions: 1.) Finiteness of the heat signal propagation velocity,

and 2.) The ability of the spatial propagation of the thermoelastic waves without attenuation, and 3.)

Existence of distortionless wave forms akin to the classical d’Alembert type waves. GN-thermoelasticity

theory itself can be subdivided into the three different types. Type-I theory (GNI/CTE thermoelasticity)

is based on the classical Fourier law of heat conduction with an infinite velocity of propagation of an

exponentially decaying heat signal. Type-II theory (GNII, hyperbolic thermoelasticity) is characterised

by the energy conservation and the finite propagation velocity of thermal waves known as second sound
waves.

In-depth study of plane harmonic type-I thermoelastic waves is given in [4]. It is shown that dispersion

equation has exactly two complex wavenumbers for a given frequency. Moreover their real and imaginary

parts are strictly positive. Plane waves in type-II continua are studied in [5]. Plane thermoelastic wave or

second sound wave is characterized by four real wavenumbers. Two of them are strictly positive. In [6]

problems concerning plane harmonic wavenumbers of coupled type-III thermoelastic waves are discussed.

In all studies [4–6] the linear symmetrical thermoelasticity is employed. They are summarized in the

monograph [7].

The present study is devoted to problem of propagating surfaces of weak and strong discontinuities

of translational displacements, microrotations and temperature in micropolar (MP) thermoelastic (TE)

continua. In first part of the paper is discussed the problems of the propagation of weak discontinuities in

type-I MPTE continua. After preliminary remarks (Sec. 1) in Sec. 2 the requisite equations for type-I linear

micropolar thermoelastic continuum are considered. Those includes the equation of motion, conservation

energy principle and entropy balance equations.

In Sec. 3 compatibility conditions for weak discontinuities propagation surfaces of displacements,

microrotations and temperature in the type-I micropolar thermoelastic continuum are given. These

conditions are derived from the requisite equations (Sec. 2) and the geometrical and kinematical conditions

due to Hadamard and Thomas [8]. The admissible normal velocities of the propagating surfaces of weak

discontinuities are found.

In Sec. 4 the distinguished cases of propagating wave surfaces in MPTE-I continuum are separately

considered. Propagating surfaces of weak discontinuities are discriminated depending on the spatial

orientations of DPVs.

In Sec. 5 the constitutive equations for hyperbolic thermoelastic type-II micropolar continuum is

derived by the field theory. The special form of the first variation of the action integral is used in order

to obtained 4-covariant jump conditions on wave surfaces.

In Sec. 6 the problems of the propagating surfaces of strong discontinuities of field variables in type-II

MPTE continua are considered. Three-dimensional form of the jump conditions on the surface of a strong

discontinuity of thermoelastic field are derived from 4-covariant form.

2. REMINDER OF BASIC EQUATIONS OF MPTE-I CONTINUUM

A framework of MPTE-I continuum (see [9] for details) is used throughout the paper. Such continua

permit the existence of rotational degrees of freedom (a rotation vector φ) along with translational degrees

of freedom (the translational displacement vector u). For MPTE-I continuum, equations of motion of

micropolar medium are written in direct tensor representation for the case of the absence of mass forces

and mass moments
{

∇ · σ = ρü,

∇ · m + ǫ · ·σ = Jφ̈,
(1)

where ρ is the mass density tensor, J is a tensor of inertia, ǫ is the three-dimensional Levi –Civita

symbol (permutation symbol, antisymmetric symbol, or alternating symbol), ∇ is the three-dimensional

Hamiltonian differential operator (the nabla symbol), dot over a symbol denotes partial differentiation

with respect to time at fixed spatial coordinates. For ρ and J tensors the symmetry conditions ρij = ρji,

Jij = Jji are obviously valid. where. Another form of the tensor representation of equations (1) is (see [10])







∇ · σ = ρü,

∇ · m + σ×
˙

I = Jφ̈,
(2)

wherein I is the second-order unit tensor.
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Equations (1) and (2) in rectangular co-ordinate system can be deduced in form

{

∂jσji = ρij üj

∂jmji + ǫijkσjk = Jij φ̈j

where ∂j is partial derivative on spatial coordinate xj .

If the equation of entropy balance are taken in form

ṡ = ξ − ∇ ·

(

h

θ

)

, (3)

where s denotes the entropy referred to the unit of volume, h is the heat flux vector, θ is the actual

temperature, ξ denotes the internal entropy product, then the equations of energy balance may be written

as

ψ̇ = tr(σ · ė) + tr(m · Γ̇) − sθ̇ − θ

(

h ·
∇θ

θ2
− ξ

)

, (4)

where ψ is the free energy per unit of volume.

The asymmetric strain tensor e and bending–torsion tensor Γ are associated with translational

displacements u and microrotations φ by formulae

e = ∇ ⊗ u − ǫ · φ, Γ = ∇ ⊗ φ. (5)

The equation (5) are represented in a rectangular co-ordinate system as

eji = ∂jui − ǫjikφk, Γji = ∂jφi.

Since the free energy ψ = ψ(e,Γ, θ) is the function of the independent variables e, Γ, θ then

ψ̇ =
∂ψ

∂eji

ėji +
∂ψ

∂Γji

Γ̇ji +
∂ψ

∂θ
θ̇. (6)

Therefore the following equations can be obtained from the comparison of equations (4) and (6)

σji =
∂ψ

∂eji

, µji =
∂ψ

∂Γji

, s = −
∂ψ

∂θ
, ξ + h ·

∇θ

θ2
= 0. (7)

The second law of thermodynamics is correct when the ξ > 0. Whence the Clausius –Duhem inequality

can be written in form

−h ·
∇θ

θ2
> 0. (8)

The inequality (8) is satisfied by using the Fourier’s law of heat conduction, which states the

proportionality of the heat flux vector h and negative spatial temperature gradient θ

h = −Λ · ∇θ, (9)

where Λ is the material thermal conductivity tensor (thermal diffusion tensor). Λ is a positive definite

matrix.

The equation (3) and takin into account the equations (7) and (9) may be transformed as

ṡθ = −∇ · h = ∇ · Λ · ∇θ. (10)

Let us expand the free energy ψ into the Taylor series in the vicinity of the natural state e = Γ = 0,

θ = 0, disregarding the terms of higher order than the second one. The following form of the expansion

is obtained for isotropic, homogeneous and centrosymmetric bodies

ψ =
µ + η

2
ejieji +

µ − η

2
ejieij +

λ

2
ekkenn +

γ + ε

2
ΓjiΓji +

γ − ε

2
ΓjiΓij+

+
β

2
ΓkkΓnn − αekkθ − ςΓkkθ −

Λ∗

2
θ2.
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The constitutive equations of MPTE-I continuum can be derived according to equations (7)

σ = (µ + η)e + (µ − η)eT + (λtre − αθ)I,

m = (γ + ε)Γ + (γ − ε)ΓT + (βtrΓ − ςθ)I,

s = αtre + ςtrΓ + Λ∗θ,

(11)

wherein λ, µ, η, γ, β, ε are isothermal constitutive constants of type-I micropolar thermoelastic continuum;

α, ς are constitutive constants providing coupling of equations of motion and heat conduction. Constants

α, ς depend not only on the mechanical properties of the continuum, but also depend on the thermal

properties.

Rewrite (11) as follows

σij = (µ + η)eji + (µ − η)eij + (λtrekk − αθ)δij ,

mij = (γ + ε)Γji + (γ − ε)Γij + (βtrΓkk − ςθ)δij ,

s = αekk + ςΓkk + Λ∗θ.

Note that
(

∂s

∂θ

)

Γ,e

=
κ

θ
,

where κ is the heat capacity (per unit volume) at constant (zero) strains. Thus the equation is derived

ds = αdtre + ςdtrΓ +
κ

θ
dθ.

Integrating this equation for entropy in assumption that s = 0 for natural state is obtained

s = αtre + ςtrΓ + κ ln

(

θ

T0

)

. (12)

Expand the logarithm in (12) under condition of |θ/T0| ≪ 1 allows rewrite entropy equation in form

s = αtre + ςtrΓ +
κ

T0

θ. (13)

Consequently the heat conduction equation can be derived by transforming equations (10) and (13) as

∇ · Λ · ∇θ − κθ̇ − α∇ · u̇ − ς∇ · φ̇ = 0.

After substituting the stress tensors σ and m from the formulas (11) in the equations of motion (1) and

taking account of (5) the system of coupled partial differential equations of motion and heat conduction

for a linear isotropic type-I micropolar thermoelastic continuum in the absence of mass forces, moments,

and heat sources can be written as [9, 11]:















(λ + µ − η)∇∇ · u + (µ + η)∇ · ∇u + 2η∇ × φ − α∇θ − ρü = 0,

(β + γ − ε)∇∇ · φ + (γ + ε)∇ · ∇φ − 4ηφ + 2η∇ × u − ς∇θ − Jφ̈ = 0,

∇
2θ −

κ

Λ∗
θ̇ −

α

Λ∗
∇ · u̇ −

ς

Λ∗
∇ · φ̇ = 0.

(14)

Hereafter θ is the temperature increment over the referential temperature, κ is the heat capacity (per

unit volume) at constant (zero) strains.

As pointed out the nonzero constitutive constants α, ς provide coupling of micropolar thermoelasticity

equations. It is usually assumed that ς = 0 (see [9]). This constitutive constant is kept in all further

considerations for the completeness analysis .

The scalar equation in the system (14) is called a generalized heat conduction equation conjugate to

the equations of motion (the first and the second equations in (14)).
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3. PROPAGATING WEAK DISCONTINUITIES OF THERMOMECHANICAL FIELDS IN MPTE-I CONTINUUM

This section is devoted to processes of propagating weak discontinuities of translational displacements

u, microrotations φ and temperature θ in the MPTE-I continuum. System of partial differential equations

(14) includes partial derivative order not higher than the second. Let a wavefront (wave surface Σ) of weak

discontinuities displacements u, microrotations φ and temperature θ be propagated in three-dimensional

space with normal velocity G. Unit normal vector to that wave surface is denoted by n. If surface Σ is

parameterized by

xi = ψi(y1, y2, t),

then components of first gαβ and second bαβ fundamental forms of surface Σ are computed by formulas

gαβ =
∂ψi

∂yα

∂ψi

∂yβ
= ∂α′xi∂β′xi, bαβ =

∂2ψi

∂yα∂yβ
ni = ∂α′∂β′xini, ∂αni = −gβγbβα∂γ′xi.

Kinematical and geometrical compatibility conditions of the second and the first order due to Hadamard

and Thomas valid for an arbitrary physical field ϕ read

[[∂i∂jϕ]] = Dninj + gαβ∂α′C(ni∂β′xj + nj∂β′xi) − gαβgστCbασ∂β′xi∂τ ′xj ,

[[∂iϕ̇]] = (−DkG + δ4C)ni + gαβ∂α′(CG)∂β′xi,

[[ϕ̈]] = (DG2 − δ4C)G + Cδ4G, [[∂4ϕ]] = −CG, [[∂iϕ]] = Cni,

(15)

where i, j = 1, 2, 3; α, β, τ, σ = 1, 2; the prime in superscripts are denoted by the Greek indices related to

surface Gaussian coordinates; D = [[∂i∂jϕ]]ninj ; δ4 is the delta-derivative operator, [[ · ]] denote 3-jumps of

the field variables..

If, in particular, the first derivative of the function ϕ is continuous across the surface Σ the relations

(15) can be reduced to

[[∂i∂jϕ]] = Dninj , [[∂iϕ̇]] = −DGni, [[ϕ̈]] = DG2.

The obtained expressions are easy to rewrite in direct tensor notations

[[∇ ⊗ ∇ ⊗ u]] = n ⊗ n ⊗ A, [[∇ ⊗ ∇ ⊗ φ]] = n ⊗ n ⊗ S,

[[∇ ⊗ u̇]] = −Gn ⊗ A, [[∇ ⊗ φ̇]] = −Gn ⊗ S,

[[ü]] = G2
A, [[φ̈]] = G2

S,

[[∇ ⊗ ∇θ]] = Bn ⊗ n,

(16)

where square brackets denote jump across surface of weak discontinuities. B,A,S are fields defined on

this surface, and the equalities B = 0,A = 0,S = 0 cannot be satisfied simultaneously at any point of

the surface, if the surface is indeed the surface of weak discontinuities. Equations (14) and (16) give the

following relations between the jumps of partial derivatives of the second order across the wave surface:















(ρG2 − (µ + η))A − (λ + µ − η)n(n · A) = 0,

(JG2 − (γ + ε))S − (β + γ − ε)n(n · S) = 0,

B +
αG

Λ∗
n · A +

ςG

Λ∗
n · S = 0.

(17)

The polarization vectors of the wave A,S can be splited into a sum of projections onto the tangent

plane and on the normal direction to the wave surface:

A = A⊥τ + A‖n, S = S⊥τ + S‖n,

A⊥ = A · τ , A‖ = A · n,

S⊥ = S · τ , S‖ = S · n,

(18)

where τ is the tangential unit vector and n is the normal unit one of the wave surface respectively.

Taking account of equations (18) the system (17) is transformed into















(ρG2 − (µ + η))(A⊥τ + A‖n) − (λ + µ − η)A‖n = 0,

(JG2 − (γ + ε))(S⊥τ + S‖n) − (β + γ − ε)S‖n = 0,

B +
αG

Λ∗
A‖ +

ςG

Λ∗
S‖ = 0.

(19)
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After rearrangements in equations (19) in view of (18) the following system is derived:















(ρG2 − (µ + η))A⊥τ + (ρG2 − (λ + 2µ))A‖n = 0,

(JG2 − (γ + ε))S⊥τ + (JG2 − (γ + 2β))S‖n = 0,

B +
αG

Λ∗
A‖ +

ςG

Λ∗
S‖ = 0.

(20)

The third equation in (20) allows us to couple a weak discontinuity of temperature with a normal

projection of weak discontinuities of translational displacements and microrotations by

B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖.

This new equation is obtained by restrictions ς 6= 0.

By the aid of orthogonality of the vectors τ and n the following equations are obtained

{

(ρG2 − (µ + η))A⊥ = 0,

(ρG2 − (λ + 2µ))A‖ = 0,

{

(JG2 − (γ + ε))S⊥ = 0,

(JG2 − (γ + 2β))S‖ = 0.
(21)

4. A CLASSIFICATION OF WEAK DISCONTINUITIES IN THE MPTE-I CONTINUUM

The 16 cases can be discriminated according to (5). These cases are gathered into the following Table.
We proceed by considering the discriminated cases separately.

Cases

Intensity vectors projections of

weak discontinuities of trans-

lational displacements

Intensity vectors projections

of weak discontinuity of mic-

rorotations

Intensity of weak discon-

tinuity of temperature

I A‖ = 0 A⊥ = 0 S‖ = 0 S⊥ = 0 B = 0

II A‖ = 0 A⊥ 6= 0 S‖ = 0 S⊥ = 0 B = 0

III A‖ 6= 0 A⊥ = 0 S‖ = 0 S⊥ = 0 B = −
αG

Λ∗
A‖

IV A‖ = 0 A⊥ = 0 S‖ = 0 S⊥ 6= 0 B = 0

V A‖ = 0 A⊥ = 0 S‖ 6= 0 S⊥ = 0 B = −
ςG

Λ∗
S‖

VI A‖ = 0 A⊥ 6= 0 S‖ = 0 S⊥ 6= 0 B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖

VII A‖ 6= 0 A⊥ = 0 S‖ 6= 0 S⊥ = 0 B = 0

VIII A‖ 6= 0 A⊥ 6= 0 S‖ = 0 S⊥ = 0 B = −
αG

Λ∗
A‖

IX A‖ = 0 A⊥ = 0 S‖ 6= 0 S⊥ 6= 0 B = −
ςG

Λ∗
S‖

X A‖ 6= 0 A⊥ = 0 S‖ = 0 S⊥ 6= 0 B = −
αG

Λ∗
A‖

XI A‖ = 0 A⊥ 6= 0 S‖ = 0 S⊥ 6= 0 B = 0

XII A‖ 6= 0 A⊥ = 0 S‖ 6= 0 S⊥ 6= 0 B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖

XIII A‖ = 0 A⊥ 6= 0 S‖ 6= 0 S⊥ 6= 0 B = −
ςG

Λ∗
S‖

XIV A‖ 6= 0 A⊥ 6= 0 S‖ 6= 0 S⊥ = 0 B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖

XV A‖ 6= 0 A⊥ 6= 0 S‖ = 0 S⊥ 6= 0 B = −
αG

Λ∗
A‖

XVI A‖ 6= 0 A⊥ 6= 0 S‖ 6= 0 S⊥ 6= 0 B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖
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Evidently in the first case A = 0, S = 0 and returning to (17) the scalar equation in (17) is satisfied

identically, so the surface Σ is actually not a surface of weak discontinuities.

In the second case, the first equation of system (21) is valid only on a wave surface propagating with

normal velocity

G = c‖, (22)

where

c‖ =

√

λ + 2µ

ρ
.

In this case the normal velocity of a weak discontinuity surface propagation G, (22) is the well known

velocity of longitudinal elastic wave c‖. In addition, if wave surface is bypassed, then the derivative of

temperature field is broke according to the third equation in (20):

B = −
αG

Λ∗
A‖.

In the third case a weak discontinuity of translational displacements exists only on the surface

propagating with the velocity

G = cµ
⊥, (23)

where

cµ
⊥ =

√

µ + η

ρ
.

It can be elucidated that the velocity G (23) exactly coincides with the one of transverse elastic wave

if the constitutive micropolar constant η equals to zero c⊥ =
√

µ/ρ.

The fourth case implies existence of a weak discontinuity of microrotation. Then the third equation of

system (20) is satisfied only on the surface of weak discontinuities propagating with normal velocity

G = cµµ

‖ ,

where

cµµ

‖ =

√

β + 2γ

J

is the wave velocity of torsion. As in the previous case, a weak discontinuity of microrotation is associated

with a weak discontinuity of a temperature field according to third equation of system (20):

B = −
ςG

Λ∗
S‖.

Thus, the constitutive constants α, ς characterize the intensity of thermal weak discontinuity.

In the fifth case, the fourth equation of the system (20) allows to compute the propagation velocity of

a weak discontinuities of microrotation

G = cµµ
⊥ ,

where

cµµ
⊥ =

√

γ + ε

J
.

Focus attention that a weak discontinuity of temperature is not associated with the tangential

projections of polarization vectors of weak discontinuities A⊥ and S⊥.

In other cases (from the VI to the XVI) the propagation of wave surfaces of weak discontinuities

displacements, microrotations and temperature is impossible if the constitutive characteristic of the type-I

micropolar thermoelastic continuum does not satisfied certain limitations as determined by (21).

In a 6-th case the factors at A‖ and S‖ should be vanished simultaneously, it is impossible if c‖ 6= cµµ

‖ .

Clearly, then the considered surface will not be a wave one. If the continuum can be described constitutive

equation of c‖ = cµµ

‖ , then the wave surface is a wave propagating with a velocity

G = c‖ = cµµ

‖ ,
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and weak discontinuity of temperature field is out of condition

B = −
αG

Λ∗
A‖ −

ςG

Λ∗
S‖. (24)

The above Eqs (24) implies a possibility of nondissipative propagation of longitudinal waves when

B = 0, i.e.
α

ς
= −

S‖

A‖
.

In the seventh case, the factors at A⊥ and S⊥ can not be equal to zero simultaneously, if cµ
⊥ 6= cµµ

⊥ .

In contrary, if the continuum characterizes matching of the transverse waves velocities cµ
⊥ = cµµ

⊥ , then

the velocity of propagation of a wave surface is equal

G = cµ
⊥ = cµµ

⊥ .

Weak discontinuity of temperature field is again identified from the condition (24) and it disappears

in the absence of normal polarization vectors projections .

Underline that in the 3-th and 5-th cases the surface of weak discontinuities in MPTE-I continuum

can propagated along with the absence of weak discontinuities of temperature field, which means non-

dissipative mechanism for the such surfaces propagating.

5. ACTION. COMPATIBILITY CONDITIONS FOR JUMPS

A field theory formalism involves mathematical description of physical fields by integral action

functional. A general form of action within a variable domain of 4-spacetime with the elementary volume

of d4X = dX1dX2dX3dX4 is

I =

∫

L (Xβ , ϕk, ∂αϕk)d4X,

where ϕk is the physical fields array, L — the Lagrangian density.

The least action principle states that the actual field is realized in the spacetime in a way that the action

of (1) is minimum, i. e. for any admissible variations of physical fields ϕk and non-variable coordinates

Xβ are δI = 0. Then the classical Euler–Lagrange equations are held:

Ek(L ) =
∂L

∂ϕk
− ∂α

∂L

∂(∂αϕk)
= 0.

In general, a conservation law has the following form

∂βJβ = 0,

where the vector Jβ is the vector 4-current. By finite variation δ▽ = δ/ε the 4-current can be obtained as

Jβ =
∂L

∂(∂βϕk)
δ▽ϕk +

(

L δβ
α − (∂αϕk)

∂L

∂(∂βϕk)

)

δ▽Xα,

if the variational symmetries of the action are known.

The finite variation of the action is (see [7])

δ▽
I =

∫

(∂βJβ)d4X. (25)

Assuming the temperature field is continuous and temperature gradient of the first order can be

discontinuous by passing through some bilateral surface Σ± propagating with the normal velocity G and

normal unit 4-vector Nβ in 4-spacetime.

We replace the integral over 4-volume in equation (25) on sum of surface integrals. Then only two

surface integrals over surface Σ are remained when the variations δ▽ϕk and δ▽Xβ are fixed on the outer

boundary of the field:

δ▽
I =

∫

Σ+

(Jβ
Nβ)+dΣ −

∫

Σ−

(Jβ
Nβ)−dΣ =

∫

Σ

[Jβ ]NβdΣ. (26)

Hereafter square brackets denote 4-jumps.
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The equation δ Im = 0 is valid for the actual field and a variations of δϕk and δXβ are continuous

in passing through the surface Σ. Therefore following 4-covariant compatibility equations for strong

discontinuities is obtained from (26):

Nβ

[

−
∂L

∂(∂βϕk)

]

= 0, Nβ

[

L δβ
α − (∂αϕk)

∂L

∂(∂βϕk)

]

= 0. (27)

One can see, that the compatibility conditions on strong discontinuities surfaces contain the jumps of

the energy-momentum 4-tensor and the Piola –Kirchhoff 4-tensor

S
4

β·
·k = −

∂L

∂(∂βϕk)
, T β·

·α = L δβ
α − (∂αϕk)

∂L

∂(∂βϕk)
. (28)

The compatibility conditions of jumps of the energy-momentum 4-tensor in view of (28) is rewritten

in form

Nβ [T β·
·α ] = [L ]Nα + [∂αϕk

S
4

β·
·k ]Nβ = 0. (29)

Relations (29) can be transformed by the compatibility conditions of the strong discontinuities of the

Piola –Kirchhoff 4-tensor into

[L ]Nα + [∂αϕk]S
4

β·
·kNβ = 0.

The only significant equation from the compatibility conditions for jumps of the energy-momentum 4-

tensor by using the Hadamard –Thomas geometric first order compatibility conditions [8] [∂αϕk] = NαF k

is obtained

[L ] + S
4

β·
·kNβF

k = 0. (30)

The three-dimensional form of the compatibility conditions on the surface of strong discontinuity of

the field is derived from the resulting 4-covariant form (27), (30):

[[L ]] + (−GS
4

4·
·k + nµS

4

µ·
·k)(−G[[∂4ϕ

k]] + nµ[[∂µϕk]]) = 0;

−G[[S
4

4·
·k]] + nµ[[S

4

µ·
·k ]] = 0 (λ, µ = 1, 2, 3).

(31)

Hereafter nµ stand for normal unit 3-vector.

The compatibility conditions for strong discontinuities are complemented by well known three-

dimensional geometrical and kinematic Hadamard –Thomas compatibility conditions of the first and the

second order [8] valid for an arbitrary field ϕk. Those are also due to Rankine and Hugoniot [12, 13].

6. ACTION FOR MPTE-II CONTINUA

The theory GNII is the only thermodynamically correct theory which satisfies the principles listed in

Sec. 1. The action taking into account of the polar microstructure can be adopted in the following form [7]

L =

∫

L (Xα, xj , d
a

j , ϑ, ∂4x
j , ∂4d

a

j , ∂4ϑ, ∂βxj , ∂βd
a

j , ∂βϑ) dX1 dX2 dX3 dX4, (32)

where Xα (α = 1, 2, 3) are the Lagrangian coordinates; xj (j = 1, 2, 3) are the Eulerian coordinates;

d
a

j (a = 1, 2, 3) are micropolar directors associated with microvolume; ϑ is the thermal displacement field.

Action density (32) we define in the form

L =
1

2
(∂4x

k)ρkj(∂4x
j) +

1

2
(∂4d

a

i)
ab

I ij(∂4d
b

j) − ψ(Xα, xj , d
a

j , ϑ, ∂4ϑ, ∂αxj , ∂αd
a

j , ∂αϑ),

wherein
ab

I ij — the microinertion tensor; ρij — the mass density tensor; ψ — volume density of the

Helmholtz’s free energy. For tensors
ab

I ij and ρij the symmetry conditions ρij = ρji,
ab

I ij =
ab

I ji are

stated.

The field equations in this case read:

∂αSα·
·j − ∂4Pj = −

∂L

∂xj
(α = 1, 2, 3, j = 1, 2, 3),

Механика 87



Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2015. Т. 15, вып. 1

∂α

a

M
α·
·j +

a

A j − ∂4(
a

Qj) = 0 (a = 1, 2, 3, α = 1, 2, 3, j = 1, 2, 3),

∂αjα
R + ∂4s =

∂L

∂ϑ
(α = 1, 2, 3),

and are supplemented by the constitutive equations:

Sα·
·j = −

∂L

∂(∂αxj)
,

a

M
α·
·j = −

∂L

∂(∂αd
a

j)
,

a

A j =
∂L

∂d
a

j
,

Pj =
∂L

∂(∂4xj)
,

a

Qj =
∂L

∂(∂4d
a

j)
, s =

∂L

∂(∂4ϑ)
, jα

R =
∂L

∂(∂αϑ)
.

Compatibility conditions on strong discontinuity surface propagating in MPTE-II continuum, according

eqs. (30), (31), take the forms:

1

2
[[∂4d

a

i
ab

I ij∂4d
b

j ]] + (G
ab

I lk∂4d
a

l − nµ

a

M
µ·
·k)(G[[∂4d

a

k]] − nµ[[∂µd
a

k]]) +
1

2
[[∂4x

kρkj∂4x
j ]]+

+(Gρlk∂4x
l − nµSµ·

·k )(G[[∂4x
k]] − nµ[[∂µxk]]) − [[ψ]] + (Gs − nµjµ

R
)(G[[∂4ϑ]] − nµ[[∂µϑ]]) = 0, (33)

Gρkl[[∂4x
k]] = nµ[[Sµ·

·l ]], G
ab

I kl[[∂4d
a

k]] = nµ[[
a

M
µ·
·l ]], G[[s]] = nµ[[jµ

R
]],

[[L ]] =
1

2
[[∂4x

kρkj∂4x
j ]] +

1

2
[[∂4d

a

i
ab

I ij∂4d
b

j ]] − [[ψ]] (j, k, l, λ, µ = 1, 2, 3).

In the case of the propagating surface of strong discontinuity through unperturbed continuum the first

of the compatibility equations (33) can be transformed to

1

2
[[∂4d

a

i]]
ab

I ij [[∂4d
b

j ]] + (G
ab

I lk∂4d
a

l − nµ

a

M
µ·
·k)(G[[∂4d

a

k]] − nµ[[∂µd
a

k]])+

+
1

2
[[∂4x

k]]ρkj [[∂4x
j ]] + (Gρlk∂4x

l − nµSµ·
·k )(G[[∂4x

k]] − nµ[[∂µxk]])−

−[[ψ]] + (Gs − nµjµ
R
)(G[[∂4ϑ]] − nµ[[∂µϑ]]) = 0 (j, k, l, λ, µ = 1, 2, 3).
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О слабых разрывах и уравнениях скачков на волновых поверхностях
в микрополярных термоупругих континуумах
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Настоящее исследование посвящено проблеме распространения поверхностей сильных и слабых разрывов поступательных

перемещений, микровращений и температуры в микрополярных (МП) термоупругих (TE) континуумах. В первой части статьи

обсуждаются проблемы распространения слабых разрывов в MPTE континуумах первого типа. Геометрические и кинемати-

ческие условия совместимости Адамара и Томаса используются для изучения возможных волновых поверхностей слабых

разрывов. Слабые разрывы классифицируются в соответствии с пространственной ориентировкой векторов поляризации

разрывов (DPVs). Показано, что поверхности слабых разрывов могут распространяться без слабых разрывов температур-

ного поля. Вторая часть работы посвящена распространению поверхностей сильных разрывов полевых переменных в MPTE

континуумах второго типа. Определяющие соотношения для гиперболических термоупругих микрополярных континуумов

второго типа получены с помощью формализма теории поля. Специальная форма первой вариации интеграла действия

позволяет получить 4-ковариантные условия скачков на волновых поверхностях. Трехмерная форма условий скачков на

поверхности сильного разрыва поля выводится из ее четырехмерной ковариантной формы.

Ключевые слова: микрополярная термоупругость, континуум первого типа, континуум второго типа, слабый разрыв,

сильный разрыв, ударная волна, продольная волна, поперечная волна, условие совместимости, скачок.
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