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The present study is devoted to problem of propagating surfaces of weak and strong discontinuities of translational displacements,
microrotations and temperature in micropolar (MP) thermoelastic (TE) continua. Problems of propagation of weak discontinuities in
type-I MPTE continua are discussed. Geometrical and kinematical compatibility conditions due to Hadamard and Thomas are used
to study possible wave surfaces of weak discontinuities. Weak discontinuities are discriminated according to spatial orientations of
the discontinuities polarization vectors (DPVs). It is shown that the surfaces of weak discontinuities can propagate exist without
weak discontinuities of the temperature field. Second part of the paper is concerned the discussions of the propagating surfaces of
strong discontinuities of field variables in type-Il MPTE continua. Constitutive relations for hyperbolic thermoelastic type-Il micropolar
continuum is derived by the field theory. The special form of the first variation of the action integral is used in order to obtained
4-covariant jump conditions on wave surfaces. Three-dimensional form of the jump conditions on the surface of a strong discontinuity
of thermoelastic field are derived from 4-covariant form.
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1. PRELIMINARY REMARKS

Problems of micropolar continua take its origin from the classical E. and F. Cosserat’s paper [1].
Micropolar (MP) continuum theories include not only translational displacements but also additional
degrees of freedom. These degrees of freedom are coupled with changes in reper (three directors)
associated with microvolume. Such changes may be described by a rotation vector when reper associated
with microvolume are rigid rotated. In contrary to conventional elasticity a continuum with microstucture
is described by the asymmetric strain and stress tensors known from many previous discussions. Thus
the asymmetric elastic theory is characterized by a comparatively large number of constitutive elastic
constants need to be determined from the experimental observations. There are several phenomena (for
example, the anomalous piezoelectric effect in quartz, the dispersion of elastic waves, as well as a number
of other experimentally observed elastic properties of the pure crystals) being beyond the scope of the
conventional thermoelasticity (CTE) and piezoelectroelasticity. That is why a development of complex
theories seems to be actual.

The type-I micropolar thermoelastic (MPTE-I) continuum may be described in terms of field
formalism, for example, from positions of the Green—-Naghdi thermoelasticity (GN-theory). Now such
mathematical frameworks of the thermoelastic behavior of solids are rapidly refined [2,3]. They are
based on different modifications of the classical Fourier law of heat conduction. The refinements aim
at derivations of hyperbolic partial differential equations of coupled thermoelasticity. Those are to
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simultaneously fulfill the following conditions: 1.) Finiteness of the heat signal propagation velocity,
and 2.) The ability of the spatial propagation of the thermoelastic waves without attenuation, and 3.)
Existence of distortionless wave forms akin to the classical d’Alembert type waves. GN-thermoelasticity
theory itself can be subdivided into the three different types. Type-I theory (GNI/CTE thermoelasticity)
is based on the classical Fourier law of heat conduction with an infinite velocity of propagation of an
exponentially decaying heat signal. Type-II theory (GNII, hyperbolic thermoelasticity) is characterised
by the energy conservation and the finite propagation velocity of thermal waves known as second sound
waves.

In-depth study of plane harmonic type-I thermoelastic waves is given in [4]. It is shown that dispersion
equation has exactly two complex wavenumbers for a given frequency. Moreover their real and imaginary
parts are strictly positive. Plane waves in type-II continua are studied in [5]. Plane thermoelastic wave or
second sound wave is characterized by four real wavenumbers. Two of them are strictly positive. In [6]
problems concerning plane harmonic wavenumbers of coupled type-III thermoelastic waves are discussed.
In all studies [4-6] the linear symmetrical thermoelasticity is employed. They are summarized in the
monograph [7].

The present study is devoted to problem of propagating surfaces of weak and strong discontinuities
of translational displacements, microrotations and temperature in micropolar (MP) thermoelastic (TE)
continua. In first part of the paper is discussed the problems of the propagation of weak discontinuities in
type-I MPTE continua. After preliminary remarks (Sec. 1) in Sec. 2 the requisite equations for type-I linear
micropolar thermoelastic continuum are considered. Those includes the equation of motion, conservation
energy principle and entropy balance equations.

In Sec. 3 compatibility conditions for weak discontinuities propagation surfaces of displacements,
microrotations and temperature in the type-I micropolar thermoelastic continuum are given. These
conditions are derived from the requisite equations (Sec. 2) and the geometrical and kinematical conditions
due to Hadamard and Thomas [8]. The admissible normal velocities of the propagating surfaces of weak
discontinuities are found.

In Sec. 4 the distinguished cases of propagating wave surfaces in MPTE-I continuum are separately
considered. Propagating surfaces of weak discontinuities are discriminated depending on the spatial
orientations of DPVs.

In Sec. 5 the constitutive equations for hyperbolic thermoelastic type-II micropolar continuum is
derived by the field theory. The special form of the first variation of the action integral is used in order
to obtained 4-covariant jump conditions on wave surfaces.

In Sec. 6 the problems of the propagating surfaces of strong discontinuities of field variables in type-II
MPTE continua are considered. Three-dimensional form of the jump conditions on the surface of a strong
discontinuity of thermoelastic field are derived from 4-covariant form.

2. REMINDER OF BASIC EQUATIONS OF MPTE-I CONTINUUM

A framework of MPTE-I continuum (see [9] for details) is used throughout the paper. Such continua
permit the existence of rotational degrees of freedom (a rotation vector ¢) along with translational degrees
of freedom (the translational displacement vector u). For MPTE-I continuum, equations of motion of
micropolar medium are written in direct tensor representation for the case of the absence of mass forces
and mass moments

{V o = pu, (1)

V-m+e -o=7Jop,

where p is the mass density tensor, J is a tensor of inertia, € is the three-dimensional Levi- Civita
symbol (permutation symbol, antisymmetric symbol, or alternating symbol), V is the three-dimensional
Hamiltonian differential operator (the nabla symbol), dot over a symbol denotes partial differentiation
with respect to time at fixed spatial coordinates. For p and J tensors the symmetry conditions p;; = pji,
Jij = J;: are obviously valid. where. Another form of the tensor representation of equations (1) is (see [10])

V.o = pu,

V~m+o->_<I:3£;S, )

wherein I is the second-order unit tensor.
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Equations (1) and (2) in rectangular co-ordinate system can be deduced in form

{83'% = pijiij

0imy; + €ik0 5k = Jijdj

where 0; is partial derivative on spatial coordinate ;.
If the equation of entropy balance are taken in form

g:g-v-(?), )

where s denotes the entropy referred to the unit of volume, h is the heat flux vector, 6 is the actual
temperature, ¢ denotes the internal entropy product, then the equations of energy balance may be written
as

&:tr(a~é)—|—tr(m-f‘)—39’—9(h-Zf—ﬁ), (4)

where ® is the free energy per unit of volume.
The asymmetric strain tensor e and bending—torsion tensor I' are associated with translational
displacements u and microrotations ¢ by formulae

e=VRu—c¢c- o, '=V®o. (5)
The equation (5) are represented in a rectangular co-ordinate system as

eji = 0ju; — €, Pr, L = 0;0;.
Since the free energy ¢ = ¢(e, T, 0) is the function of the independent variables e, T', § then

o o . o,
T T

)= —4. (6)

Therefore the following equations can be obtained from the comparison of equations (4) and (6)

o oY o oY _ 81# Vo
=g M= gr S=gp  EFhigm =0 (7)

The second law of thermodynamics is correct when the £ > 0. Whence the Clausius — Duhem inequality

can be written in form
Vo

~h- 5 >0, 8)

The inequality (8) is satisfied by using the Fourier’s law of heat conduction, which states the
proportionality of the heat flux vector h and negative spatial temperature gradient 6

h=-A-Vo, (9)

where A is the material thermal conductivity tensor (thermal diffusion tensor). A is a positive definite
matrix.
The equation (3) and takin into account the equations (7) and (9) may be transformed as

$0=-V-h=V-A V0. (10)

Let us expand the free energy 1 into the Taylor series in the vicinity of the natural state e =T = 0,
0 = 0, disregarding the terms of higher order than the second one. The following form of the expansion
is obtained for isotropic, homogeneous and centrosymmetric bodies

+ A + €
:U/ 2 77 €ji€ji + - 2 nejieij + §ekkenn 2 P]lrjl + F]2F1j+

A*
+§Fkk1“,m - aeka - §Fkk9 — 792.

¢ =
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The constitutive equations of MPTE-I continuum can be derived according to equations (7)

o= (u+mne+(u—ne’ + (Atre —ab)I,
m = (y+e)T + (y —&)TT 4 (BtrT — cO)I, (11)
s = atre + ¢trI' + A0,

wherein A, i1, 1,7, 3, ¢ are isothermal constitutive constants of type-I micropolar thermoelastic continuum;
«, ¢ are constitutive constants providing coupling of equations of motion and heat conduction. Constants
«, ¢ depend not only on the mechanical properties of the continuum, but also depend on the thermal
properties.

Rewrite (11) as follows

oij = (1 +n)eji + (1 —n)eij + (Atrexs, — ab)dy;,
mi; = (v +e)lji + (v —&)Tij + (BtrL iy — <0)045,
s = aepk + sTip + AL6.

Os) - _
0)p, 0

where x is the heat capacity (per unit volume) at constant (zero) strains. Thus the equation is derived

Note that

ds = adtre + ¢dtrI’ + gd&.

Integrating this equation for entropy in assumption that s = 0 for natural state is obtained

0
s = atre + ¢trI’' + k1n (—> . (12)
To

Expand the logarithm in (12) under condition of |#/Ty| < 1 allows rewrite entropy equation in form
K
s = atre + ¢trI' + —86. (13)
To

Consequently the heat conduction equation can be derived by transforming equations (10) and (13) as
V-AVO0—kl—aV -u—cV-¢=0.

After substituting the stress tensors o and m from the formulas (11) in the equations of motion (1) and
taking account of (5) the system of coupled partial differential equations of motion and heat conduction
for a linear isotropic type-I micropolar thermoelastic continuum in the absence of mass forces, moments,
and heat sources can be written as [9, 11]:

A+ p—nVV.-u+(u+nV-Vu+2nV x ¢ —aVl — pi =0,

(B+y—e)VV -0+ (y+&)V-Vo—4ndp+ 29V x u -Vl —Jp =0, (14)
20 _ "o _Yg.oa_v.b=

V- gl Vi £V g =0

Hereafter 6 is the temperature increment over the referential temperature, x is the heat capacity (per
unit volume) at constant (zero) strains.

As pointed out the nonzero constitutive constants a, ¢ provide coupling of micropolar thermoelasticity
equations. It is usually assumed that ¢ = 0 (see [9]). This constitutive constant is kept in all further
considerations for the completeness analysis .

The scalar equation in the system (14) is called a generalized heat conduction equation conjugate to
the equations of motion (the first and the second equations in (14)).
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3. PROPAGATING WEAK DISCONTINUITIES OF THERMOMECHANICAL FIELDS IN MPTE-I CONTINUUM

This section is devoted to processes of propagating weak discontinuities of translational displacements

u, microrotations ¢ and temperature 6 in the MPTE-I continuum. System of partial differential equations

(14) includes partial derivative order not higher than the second. Let a waveiront (wave surface ¥) of weak

discontinuities displacements u, microrotations ¢ and temperature 6 be propagated in three-dimensional

space with normal velocity G. Unit normal vector to that wave surface is denoted by n. If surface X is
parameterized by

zt =9yt 2 ),
then components of first g®” and second b, fundamental forms of surface ¥ are computed by formulas
awi 8,(/11' ; ) aZwi
af — 5 ~ 48 7 — Yo’ 8,17 ba )
Job Ay Oy Tt o 8y0‘3y5n

Kinematical and geometrical compatibility conditions of the second and the first order due to Hadamard
and Thomas valid for an arbitrary physical field ¢ read

P = 8(1/8,3/:5%", R —gﬁ”’bga(%/xi.

Haiajtp]] = Dnmj + gaﬁaa/C(niag/xj + njag/xi) - g"‘ﬁg‘”C’bMaglmiaT/xj,
[0:;2] = (—D*G + 6,C)n; + P (CG)Dg 1, (15)
[¢] = (DG? — 6,C)G + C6,G, [0s¢] = —CG, [0:] = Cny,
where i,j =1,2,3; o, 3, 7,0 = 1,2; the prime in superscripts are denoted by the Greek indices related to
surface Gaussian coordinates; D = [0;0;¢]n'n?; d, is the delta-derivative operator, [ -] denote 3-jumps of
the field variables..
If, in particular, the first derivative of the function ¢ is continuous across the surface 3 the relations
(15) can be reduced to
ﬂ@iajw]] = Dninj, [[8,@]] = —l)G”I’Li7 [[@H = DGQ.

The obtained expressions are easy to rewrite in direct tensor notations

[VeoVeu=ne®n® A, [VeoVeeol=n@n®s,
[Vou]=-Gng A, [Ve¢]=-Gn®Ss, (16)
[i] = G*A, [¢] = G?s,

[V® V0] =Bn®n,

where square brackets denote jump across surface of weak discontinuities. B, A, S are fields defined on
this surface, and the equalities B = 0, A = 0,S = 0 cannot be satisfied simultaneously at any point of
the surface, if the surface is indeed the surface of weak discontinuities. Equations (14) and (16) give the
following relations between the jumps of partial derivatives of the second order across the wave surface:

(pG* = (u+n)A—-A+p—nnn-A)=0,
(3G* = (v+¢))S—(B+v—¢e)n(n-8) =0, (17)

B+aGn-A+£n~S:O.

A, A

The polarization vectors of the wave A, S can be splited into a sum of projections onto the tangent
plane and on the normal direction to the wave surface:

AZALT—&-AHH, SZSLT—FSHH,
AJ_:A'T, AH:A'n7 (18)
SL=S~T, SHZS-II,
where 7 is the tangential unit vector and n is the normal unit one of the wave surface respectively.

Taking account of equations (18) the system (17) is transformed into

(pG* = (n+m)(ALT + An) — (A+ 1 —n)An =0,

(3G? —G(7+6))éSLT+SHn) —(B+y—¢)Smn =0, (19)
(67 S
B+ T*Al‘ + ES\| =0.
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After rearrangements in equations (19) in view of (18) the following system is derived:

(pG? = (u+n)ALT + (pG® — (A + 21)) An = 0,

(3G2 - (’7 + 5))SJ_T + (3G2 — (’Y + 2ﬁ))5‘|n =0, (20)
G G

B+ OIZ\—*AH + j\—*S” =0.

The third equation in (20) allows us to couple a weak discontinuity of temperature with a normal
projection of weak discontinuities of translational displacements and microrotations by

aG <G
This new equation is obtained by restrictions ¢ # 0.
By the aid of orthogonality of the vectors 7 and n the following equations are obtained

{(pG2 —(u )AL =0, {< (21)

5G2 — (’Y+€))SJ_ =0,
(pG? — (A +2p)) A =0, 3G?

QG = (v +20))5, = 0.
4. A CLASSIFICATION OF WEAK DISCONTINUITIES IN THE MPTE-l CONTINUUM

The 16 cases can be discriminated according to (5). These cases are gathered into the following Table.
We proceed by considering the discriminated cases separately.

Intensity vectors projections of Intensity vectors projections . .
; o . o . Intensity of weak discon-
Cases weak discontinuities of trans- of weak discontinuity of mic- o
. . . tinuity of temperature
lational displacements rorotations
[ Ay=0 AL =0 S =0 S =0 B=0
II Ay=0 AL #0 S =0 S1 =0 B=0
aG
11 A #0 Al =0 S =0 S =0 B:_A A
v A= AL =0 S =0 SL#0 B=0
<G
\Y AH: AL =0 SH#O S =0 BzfA SH
aG <G
VI A =0 AL #0 S =0 SL#0 B:_EA“_ES"
VII AH#O A =0 SH#O S, =0 B=0
oG
VIII A #0 AL #0 Sy =0 S1=0 B:_TA“
<G
IX AH:O Al =0 SH#O SL750 B:_A SH
aG
X AH;EO AJ_IO SHI SJ_#O B:_A*AH
XI AH: AL #0 S = S1L#0 B=0
oG <G
X1l A #0 AL =0 S| #0 SL#0 B=-=4 -5
<G
XIII AHIO AL#O SH#O SL#O B:_A SH
aG <G
oG
XV A #£0 AL #0 Sy =0 SL#0 B=--—4
aG sG
XVI AH #0 AL #0 SH #0 S1#0 B:_A_*AH_A_*S”
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Evidently in the first case A =0, S = 0 and returning to (17) the scalar equation in (17) is satisfied
identically, so the surface X is actually not a surface of weak discontinuities.
In the second case, the first equation of system (21) is valid only on a wave surface propagating with
normal velocity
G = Clls (22)

[A+2pu
CH: P .

In this case the normal velocity of a weak discontinuity surface propagation G, (22) is the well known
velocity of longitudinal elastic wave ¢|. In addition, if wave surface is bypassed, then the derivative of
temperature field is broke according to the third equation in (20):

where

In the third case a weak discontinuity of translational displacements exists only on the surface
propagating with the velocity

G=/d, (23)
where
K+
= /——.
P
[t can be elucidated that the velocity G (23) exactly coincides with the one of transverse elastic wave
if the constitutive micropolar constant 7 equals to zero ¢, = +/pu/p.

The fourth case implies existence of a weak discontinuity of microrotation. Then the third equation of
system (20) is satisfied only on the surface of weak discontinuities propagating with normal velocity

G_CNH
I

where

A B+2y
| —

~

J

is the wave velocity of torsion. As in the previous case, a weak discontinuity of microrotation is associated
with a weak discontinuity of a temperature field according to third equation of system (20):

B=-—-—5.
ALl
Thus, the constitutive constants «a, ¢ characterize the intensity of thermal weak discontinuity.

In the fifth case, the fourth equation of the system (20) allows to compute the propagation velocity of
a weak discontinuities of microrotation

B
G=c",
where
T
it = ~
J

Focus attention that a weak discontinuity of temperature is not associated with the tangential
projections of polarization vectors of weak discontinuities A, and S, .

In other cases (from the VI to the XVI) the propagation of wave surfaces of weak discontinuities
displacements, microrotations and temperature is impossible if the constitutive characteristic of the type-I
micropolar thermoelastic continuum does not satisfied certain limitations as determined by (21).

In a 6-th case the factors at A and S| should be vanished simultaneously, it is impossible if ¢ # cﬁ”‘
Clearly, then the considered surface will not be a wave one. If the continuum can be described constitutive
equation of ¢ = c‘H‘“, then the wave surface is a wave propagating with a velocity

GZCHZCT\W?
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and weak discontinuity of temperature field is out of condition

aG <G
B=—3-4 -3
The above Eqs (24) implies a possibility of nondissipative propagation of longitudinal waves when
B =0, i.e.

5. (24)

a_ S5

s A

In the seventh case, the factors at A, and S, can not be equal to zero simultaneously, if c‘i #+ c‘i“.
In contrary, if the continuum characterizes matching of the transverse waves velocities ¢/{ = ¢!/, then
the velocity of propagation of a wave surface is equal

G=d =d"
Weak discontinuity of temperature field is again identified from the condition (24) and it disappears
in the absence of normal polarization vectors projections .
Underline that in the 3-th and 5-th cases the surface of weak discontinuities in MPTE-I continuum
can propagated along with the absence of weak discontinuities of temperature field, which means non-
dissipative mechanism for the such surfaces propagating.

5. ACTION. COMPATIBILITY CONDITIONS FOR JUMPS

A field theory formalism involves mathematical description of physical fields by integral action
functional. A general form of action within a variable domain of 4-spacetime with the elementary volume
of d*X = dX'dX?dX3dX* is

I = /.Z(Xﬁ,gpk,@ago’“)d“X,
where " is the physical fields array, .2 — the Lagrangian density.
The least action principle states that the actual field is realized in the spacetime in a way that the action

of (1) is minimum, i.e. for any admissible variations of physical fields ¢* and non-variable coordinates
X7 are 6. = 0. Then the classical Euler-Lagrange equations are held:

In general, a conservation law has the following form
pJ? =0,
where the vector J? is the vector 4-current. By finite variation 6V = /¢ the 4-current can be obtained as

0L 0L
b= == sk (gag — (Dao® 4) sV X
os)" ¢ 0a) 50507

if the variational symmetries of the action are known.
The finite variation of the action is (see [7])

V. = / (0pJ°)d*X . (25)

Assuming the temperature field is continuous and temperature gradient of the first order can be
discontinuous by passing through some bilateral surface ¥* propagating with the normal velocity G' and
normal unit 4-vector .43 in 4-spacetime.

We replace the integral over 4-volume in equation (25) on sum of surface integrals. Then only two
surface integrals over surface ¥ are remained when the variations 67" and 6§ X? are fixed on the outer
boundary of the field:

VI = | (JPAp)tas — | (JPAG)TdS = | [JP]ApdE. (26)
Jore Jurres]

Hereafter square brackets denote 4-jumps.

86 Hay4Hbiri oTgen



V. A. Kovalev et al. On weak discontinuities and jump equations 4@§§§

The equation §Im = 0 is valid for the actual field and a variations of §p* and §X? are continuous
in passing through the surface X. Therefore following 4-covariant compatibility equations for strong
discontinuities is obtained from (26):

0L } [ 0L
—e | =0, A | L08 — (Oay” =0. (27)
5 |- | O g0
One can see, that the compatibility conditions on strong discontinuities surfaces contain the jumps of
the energy-momentum 4-tensor and the Piola — Kirchhoff 4-tensor
0% 0ZL
B _ B _ cpsp k
S = a5 T2 =26 — (0u¢”) =
CNEIED ) 30e7)

The compatibility conditions of jumps of the energy-momentum 4-tensor in view of (28) is rewritten

in form

(28)

MITZ] = (L) N+ (009" §5]A5 = 0. (29)

Relations (29) can be transformed by the compatibility conditions of the strong discontinuities of the
Piola - Kirchhoff 4-tensor into
(L) Aa + [0a*]55 5 = 0.

The only significant equation from the compatibility conditions for jumps of the energy-momentum 4-
tensor by using the Hadamard — Thomas geometric first order compatibility conditions [8] [0a¢*] = A4.FF
is obtained

1] + fiwﬁyk =0. (30)

The three-dimensional form of the compatibility conditions on the surface of strong discontinuity of
the field is derived from the resulting 4-covariant form (27), (30):

[Z] + (-GS +1u8'5) (G016 + nu[0,6"]) = 0;

: 31
~GIgET +rgET =0 (=12 o
Hereafter n,, stand for normal unit 3-vector.
The compatibility conditions for strong discontinuities are complemented by well known three-
dimensional geometrical and kinematic Hadamard - Thomas compatibility conditions of the first and the
second order [8] valid for an arbitrary field ©*. Those are also due to Rankine and Hugoniot [12,13].

6. ACTION FOR MPTE-Il CONTINUA

The theory GNII is the only thermodynamically correct theory which satisfies the principles listed in
Sec. 1. The action taking into account of the polar microstructure can be adopted in the following form [7]

L = / L(X 27 7,0, 0407,04d°, 040, 0527, Dpd’ , Dp)) dX ' dX? dX? dX*, (32)

where X (o = 1,2,3) are the Lagrangian coordinates; 7 (j = 1,2,3) are the Eulerian coordinates;
@’ (a=1,2,3) are micropolar directors associated with microvolume; ¥ is the thermal displacement field.
a

Action density (32) we define in the form

ab

1 1 . . o , ,
&L = —(0az")p1; (Onz?) + 5(84611)31']'(34(3]) — (XY 2, d’, 0,040, 0027, Oad’, 0aV),
a a a

5

b
wherein %ij — the microinertion tensor; p;; — the mass density tensor; ¢» — volume density of the

ab ab ab
Helmbholtz’s free energy. For tensors J,; and p;; the symmetry conditions p;; = pji, Jij = Jji are

stated.
The field equations in this case read:

0L

(=1,2,3, j=1223),
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Dol + o —04(2;) =0 (a=123, a=123, j=123),
o 0z B
8&JR+848_ % (a_1a2a3)7
and are supplemented by the constitutive equations:
go _ _ 0L /;/a,__ 0L ;{_%
T 9(0a29) T 9(0ad?)’ Y
a a
P _ 0L :@'— 0L . 0L o 0Z

17 9(0gi) 1= (Oad)’ T 9(09) R T 8(0.09)

Compatibility conditions on strong discontinuity surface propagating in MPTE-II continuum, according
egs. (30), (31), take the forms:

1 ;90 j ab ! 4 k k 1 k j
5[[34gl 3z’j34cbl I+ (Gﬁlk@gl - nu-//-k)(G[[aﬂz - nu[[augl D) + 51042 pr; 0z’ ]+
+(GpukOsx’ — 1, ST (G[0s2*] — np[0,2°]) — [W] + (Gs — nuif ) (G[049] — 0y [0,9]) =0,
ab a
Gpr[0s2™] = n [97],  GIw [8451#“]] =n, 2], Gls] =n.ligl

(33)

1 . 1 .ab . )
<] = 5[[54$k/)kj34333]] + 5[@4{ jijaélgj]] — [¥] (G, kLA p=1,2,3).

In the case of the propagating surface of strong discontinuity through unperturbed continuum the first
of the compatibility equations (33) can be transformed to
1 inab . ab . a . & L
iﬂ&lﬁl Hjijﬂazl%lj]] +(GTwdad —”u///.k)(G[[auj ]]—nu[[augl [+
1 , .
+5 1042 ks [0427] + (GpuDsz’ — 0y 85 (G0s2"] = 1, [0,2*])—
7[[1/}]] + (GS - n,ujllit{)<Gﬂa4fl9ﬂ - n#[[a,uﬂ]]) =0 (]7 ka l? )‘a B = 17 27 3)
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O cnabbix pa3pbiBax U ypaBHEHUSIX CKa4YKOB Ha BOMTHOBbIX NOBEPXHOCTSX
B MUKPOMO/IIPHbIX TEPMOYNPYruX KOHTUHYYMaXx
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Hacrosilee nccnenoBaHue nocesiLeHo npobneme pacnpocTpaHeHust NOBEPXHOCTEN CUMbHBIX 1 CNabbix pa3pbiBOB NOCTyNaTeNbHbIX
nepemelLLeHIi, MIUKPOBPALLEHMIA 1 Temnepartypbl B MukpononsapHbix (M) repmoynpyrix (TE) KoHTHYymMax. B nepBoii 4actu cratbu
obcyx aatoTcst npobnembl pacnpocTpaHeHus cnabbix paspbiBoB B MPTE KOHTUHyyMax nepeoro Tuna. FeomeTpuyeckiie i KuHemartu-
4yeckie YCnoBIst COBMECTUMOCTI AflamMapa v TomMaca CTONb3YTCs st U3YHEHIst BO3MOXHbIX BONHOBLIX MOBEPXHOCTEN cnabbix
pa3pbiBoB. Cnabble paspbiBbl KNAacCUULMPYIOTCS B COOTBETCTBIN C MPOCTPAHCTBEHHON OPUEHTVPOBKON BEKTOPOB MOMSpU3aLIMIA
pa3pbiBoB (DPVs). Moka3aHo, YT0 NOBEPXHOCTU CNabbix paspbiBOB MOTYT pacnpocTpaHsiteest 6e3 cnabbix paspbiBoB Temnepartyp-
Horo nonsi. Bropas 4acTb paboTkl NOCBSLLEHa PacrpOCTPAHEHMIO MOBEPXHOCTEN CUNbHBIX PA3PLIBOB NONEBbIX NepeMeHHbIX B MPTE
KOHTUHYYyMax BTOPOro Ttuna. Onpe,u,enﬂrow,me COOTHOLWeHWd ong FI/II'Iep60)'IVIHeCKI/IX TEPMOYNPYrmMx MUKPOMONSAPHBIX KOHTUHYYMOB
BTOPOrO TWMa MOMy4eHbl C MOMOLLbI0 doopManuama Teopun nonsi. CnewumnanbHas oopMa nepeoil Bapuaumm uHTerpana aeictsmns
No3BONSIET NONYYUTL 4-KOBapUAHTHbIE YCNIOBUSI CKAYKOB Ha BOMHOBLIX MOBEPXHOCTSIX. TpEXMepHast oopma YCNOoBuiA CKa4KOB Ha
MOBEPXHOCTI CUMbHOTO pa3pbiBa Mons BbIBOAUTCS 13 €€ YETHIPEXMEPHON KOBAPUAHTHOI (OPMbI.

KntoqeBble cnosa: MUKpononspHasa TepMoynpyroctb, KOHTUHYYM MepBoro Tuna, KOHTUHYyM BTOPOro Tuna, cnabbiii paspbiB,

CUNbHbIIA paspeblB, yaapHasa BOMHA, NPOA0/IbHAs BOJIHA, NonepeyHas BONHa, yCnoBne COBMECTUMOCTH, CKaqok.

Pa6oma evinoanena npu wacmuuroil gurarncosoii noddepicke PODH (npoexm MNe 13-01-00139 «[unepboruue-
CKUe mennosvle 80AHbL 8 MBepOblx meaax ¢ mukpocmpykmypoil») u Murnobprayxu P® 6 pamkax npoexmnoil wacmu
eoc. 3adanus PrE0OY BIIO «Canl'TY» (npoexm Ne 16.2518.2014/(K)).
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