ции высыхающих капель биологических жидкостей // Журн. технической физики. 2009. Т. 79, № 8. С. 133–141.

7. *Stauffer D., Aharony A.* Introduction to Percolation Theory. L. : Taylor & Francis, 1992. 181 p.

8. *Sahimi M.* Application of Percolation Theory. L. : Taylor & Francis, 1994. 258 p.

9. Займан Д. Модели беспорядка. Теоретическая физика однородно неупорядоченных систем. М. : Мир, 1982. 591 с.

10. Федер Е. Фракталы. М. : Мир, 1991. 254 с.

11. Ohira K., Sato M., Kohmoto M. Fluctuations in chemical gelation // Phys. Rev. E. 2007. Vol. 75, iss. 4, 041402.

12. *Gado E., Fierro A., Arcangelis L., Coniglio A.* Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses // Phys. Rev. E. 2004. Vol. 69, iss. 5, 051103.

13. *Jespersen S.* Cluster diffusion at the gelation point // Phys. Rev. E. 2002. Vol. 66, iss. 3, 031502.

14. *Vernon D., Plischke M.* Viscoelasticity near the gel point: A molecular dynamics study // Phys. Rev. E. 2001. Vol. 64, iss. 3, 031505.

15. Vernon D. Model for gelation with explicit solvent effects: Structure and dynamics / D. Vernon, M. Plischke // Phys. Rev. E. 2003. Vol. 67, iss. 1, 011401.

16. *Monkos K*. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements // J. of Biological Phys. 2005. Vol. 31. P. 219–232.

17. Rottereau M., Gimel J., Nicolai T., Durand D.

УДК 539.3

АСИМПТОТИЧЕСКОЕ ИНТЕГРИРОВАНИЕ ДИНАМИЧЕСКИХ УРАВНЕНИЙ ТЕОРИИ УПРУГОСТИ ДЛЯ СЛУЧАЯ МНОГОСЛОЙНОЙ ТОНКОЙ ОБОЛОЧКИ

М. В. Вильде, Л. Ю. Коссович, Ю. В. Шевцова

Саратовский государственный университет E-mail: mv_wilde@mail.ru

Производится асимптотическое интегрирование трехмерных динамических уравнений теории упругости для случая многослойных тонких оболочек произвольного очертания. Построены тангенциальное и поперечное низкочастотные длинноволновые приближения. Выведены двумерные разрешающие системы уравнений.

Ключевые слова: многослойные оболочки, низкочастотные длинноволновые приближения, асимптотические методы.

3d Monte Carlo simulation of site-bond continuum percolation of spheres // The European Physical J. E: Soft Matter and Biological Physics. 2003. Vol. 11. P. 61–64.

18. Johner N., Grimaldi C., Balberg I., Ryser P. Transport exponent in a three-dimensional continuum tunnelingpercolation model // Phys. Rev. B. 2008. Vol. 77, iss. 17, 174204.

19. Matsumoto M. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator // ACM Trans. on Modeling and Computer Simulations. 1998. Vol. 8, N 1. P. 3–30.

20. Hoshen J., Kopelman R. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm // Phys. Rev. B. 1976. Vol. 14, N_{0} 8. P. 3438–3445.

21. *Rubin F*. The Lee Path Connection Algorithm // IEEE Transactions on Computers. 1974. Vol. 23. P. 907–914.

22. *Тейлор Д.* Введение в теорию ошибок / пер. с англ. М. : Мир, 1985. 272 с.

23. Тарасевич Ю. Ю. Перколяция: теория, приложения, алгоритмы. М. : Едиториал УРСС, 2002. 112 с.

24. Balberg I., Binenbaum N. Invariant properties of the percolation thresholds in the soft-core-hard-core transition // Phys. Rev. A. 1987. Vol. 35, $N_{\rm P}$ 12. P. 5174–5177.

25. *Эфрос А. Л.* Физика и геометрия беспорядка. М. : Наука, 1982. 260 с.

26. Zhydkov V. 3D continuum percolation approach and its application to lava-like fuel-containing materials behavior forecast // Condensed Matter Phys. 2009. Vol. 12, $N_{\rm P}$ 2. P. 193–203.

Asymptotic Integration of Dynamic Elasticity Theory Equations in the Case of Multilayered Thin Shell

M. V. Wilde, L. Yu. Kossovich, Yu. V. Shevtsova

Asymptotic integration of elasticity theory 3D equations is fulfilled for the case of multilayered arbitrary-shaped thin-walled shells. The tangential and the transverse long-wave low-frequency approximations are constructed. The governing 2D equations are derived.

Key words: multilayered shells, long-wave low-frequency approximations, asymptotic methods.

Целью данной работы является развитие асимптотических методов исследования динамических процессов в тонкостенных телах, предложенных в работах [1–5]. Метод асимптотического интегрирования трехмерных динамических уравнений теории упругости обобщается на случай многослойных

оболочек произвольного очертания. Рассматривается случай низкочастотных длинноволновых приближений, допускающий сведение трехмерных уравнений теории упругости к двумерным уравнениям относительно величин, заданных на срединной поверхности оболочки. В отличие от других работ, посвященных построению двумерных теорий многослойных оболочек (см., например, [6]), полиномиальный закон изменения НДС по толщинной координате не задается заранее, а определяется в ходе асимптотического интегрирования.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим многослойную оболочку произвольного очертания толщины 2*h*. Будем предполагать, что каждый слой оболочки выполнен из изотропного упругого материала. Введем криволинейную триортогональную систему координат:

$$\overline{P}(\alpha_1, \alpha_2, \alpha_3) = \overline{M}(\alpha_1, \alpha_2) + \alpha_3 \overline{n}, \tag{1}$$

где (α_1, α_2) — параметры линий кривизны срединной поверхности оболочки, α_3 — расстояние по нормали, \overline{n} — единичный вектор нормали к срединной поверхности. Поверхности раздела слоев зададим уравнениями

$$\alpha_3 = z_p = \text{const}, \qquad p = \overline{1, n-1}, \qquad h = z_0 > z_1 > \dots > -h = z_n,$$
(2)

n — число слоев. Подчеркнем, что поверхность $\alpha_3 = 0$ соответствует срединной поверхности оболочки и в общем случае не является поверхностью раздела слоев. Все величины, относящиеся к k-му слою, будем отмечать верхним (для искомых функций) или нижним (для постоянных параметров) индексом k. Толщину k-го слоя обозначим $2h_k$, тогда $z_{k-1} - z_k = 2h_k$.

Трехмерные динамические уравнения теории упругости для каждого слоя оболочки запишем в форме

$$\frac{1}{H_{i}}\frac{\partial\sigma_{ii}^{(k)}}{\partial\alpha_{i}} + \frac{1}{H_{j}}\frac{\partial\sigma_{ji}^{(k)}}{\partial\alpha_{j}} + \frac{\partial\sigma_{3i}^{(k)}}{\partial\alpha_{3}} + \frac{1}{H_{i}H_{j}}\frac{\partial H_{j}}{\partial\alpha_{i}}\left(\sigma_{ii}^{(k)} - \sigma_{jj}^{(k)}\right) + \frac{1}{H_{i}H_{j}}\frac{\partial H_{i}}{\partial\alpha_{j}}\left(\sigma_{ij}^{(k)} + \sigma_{ji}^{(k)}\right) + \\
+ \frac{1}{H_{i}H_{j}}\frac{\partial H_{i}H_{j}}{\partial\alpha_{3}}\sigma_{3i}^{(k)} + \frac{1}{H_{i}}\frac{\partial H_{i}}{\partial\alpha_{3}}\sigma_{i3}^{(k)} - \rho_{k}\frac{\partial^{2}v_{i}^{(k)}}{\partial t^{2}} = 0,$$
(3)
$$\frac{1}{H_{i}}\frac{\partial\sigma_{i3}^{(k)}}{\partial\alpha_{i}} + \frac{1}{H_{j}}\frac{\partial\sigma_{j3}^{(k)}}{\partial\alpha_{j}} + \frac{\partial\sigma_{33}^{(k)}}{\partial\alpha_{3}} - \frac{1}{H_{i}}\frac{\partial H_{i}}{\partial\alpha_{3}}\sigma_{ii}^{(k)} - \frac{1}{H_{j}}\frac{\partial H_{j}}{\partial\alpha_{3}}\sigma_{jj}^{(k)} + \frac{1}{H_{i}H_{j}}\frac{\partial H_{i}H_{j}}{\partial\alpha_{3}}\sigma_{33}^{(k)} + \\
+ \frac{1}{H_{i}H_{j}}\frac{\partial H_{j}}{\partial\alpha_{i}}\sigma_{i3}^{(k)} + \frac{1}{H_{i}H_{j}}\frac{\partial H_{i}}{\partial\alpha_{j}}\sigma_{j3}^{(k)} - \rho_{k}\frac{\partial^{2}v_{3}^{(k)}}{\partial t^{2}} = 0,$$

И

$$\begin{split} \sigma_{ij}^{(k)} &= \frac{E_k}{2(1+\nu_k)\kappa_k^2} \left[\frac{\nu_k}{1-\nu_k} \left(\frac{\partial v_3^{(k)}}{\partial \alpha_3} + \frac{1}{H_j} \frac{\partial v_j^{(k)}}{\partial \alpha_j} + \frac{1}{H_iH_j} \frac{\partial H_j}{\partial \alpha_i} v_i^{(k)} + \frac{1}{H_j} \frac{\partial H_j}{\partial \alpha_3} v_3^{(k)} \right) + \\ &+ \frac{1}{H_i} \frac{\partial v_i^{(k)}}{\partial \alpha_i} + \frac{1}{H_iH_j} \frac{\partial H_i}{\partial \alpha_j} v_j^{(k)} + \frac{1}{H_i} \frac{\partial H_i}{\partial \alpha_3} v_3^{(k)} \right], \\ \sigma_{33}^{(k)} &= \frac{E_k}{2(1+\nu_k)\kappa_k^2} \left[\frac{\nu_k}{1-\nu_k} \left(\frac{1}{H_i} \frac{\partial v_i^{(k)}}{\partial \alpha_i} + \frac{1}{H_j} \frac{\partial H_j}{\partial \alpha_3} v_3^{(k)} + \frac{1}{H_iH_j} \frac{\partial H_i}{\partial \alpha_j} v_j^{(k)} + \frac{1}{H_iH_j} \frac{\partial H_j}{\partial \alpha_i} v_i^{(k)} + \\ &+ \frac{1}{H_i} \frac{\partial H_i}{\partial \alpha_3} v_3^{(k)} + \frac{1}{H_j} \frac{\partial H_j}{\partial \alpha_3} v_3^{(k)} \right) + \frac{\partial v_3^{(k)}}{\partial \alpha_3} \right], \end{split}$$

$$(4) \\ \sigma_{ij}^{(k)} &= \frac{E_k}{2(1+\nu_k)} \left[\frac{1}{H_j} \frac{\partial v_i^{(k)}}{\partial \alpha_j} + \frac{1}{H_i} \frac{\partial v_j^{(k)}}{\partial \alpha_i} - \frac{1}{H_i} \frac{\partial H_i}{\partial \alpha_j} v_i^{(k)} - \frac{1}{H_iH_j} \frac{\partial H_j}{\partial \alpha_i} v_j^{(k)} \right], \\ \sigma_{ij}^{(k)} &= \frac{E_k}{2(1+\nu_k)} \left[\frac{1}{H_j} \frac{\partial v_i^{(k)}}{\partial \alpha_j} + \frac{1}{H_i} \frac{\partial v_j^{(k)}}{\partial \alpha_i} - \frac{1}{H_iH_j} \frac{\partial H_i}{\partial \alpha_j} v_i^{(k)} - \frac{1}{H_iH_j} \frac{\partial H_j}{\partial \alpha_i} v_j^{(k)} \right], \end{split}$$

где
$$\kappa_k = \frac{c_{2,k}}{c_{1,k}} = \sqrt{\frac{1-2\nu_k}{2(1-\nu_k)}}, \ c_{1,k} = \sqrt{\frac{E(1-\nu_k)}{(1+\nu_k)(1-2\nu_k)\rho_k}}, \ c_{2,k} = \sqrt{\frac{E_k}{2(1+\nu_k)\rho_k}}, \ \sigma_{ij}^{(k)}$$
 – напряжения,

 $v_m^{(k)}$ — перемещения, t — время, H_i — параметры Ламе, E_k — модуль Юнга, ν_k — коэффициент Пуассона, $c_{1,k}$ — скорость волны расширения, $c_{2,k}$ — скорость волны сдвига. Здесь и далее всегда предполагается, что индексы принимают следующие значения: $i \neq j = 1, 2, m = 1, 2, 3, k = \overline{1, n}, p = \overline{1, n-1}$. Параметры Ламе выражаются через коэффициенты первой квадратичной формы срединной поверхности оболочки A_i^2 и главные радиусы кривизны R_i следующим образом:

$$H_i = A_i \left(1 + \frac{\alpha_3}{R_i} \right). \tag{5}$$

Будем предполагать, что лицевые поверхности оболочки свободны от нагрузки. Тогда граничные условия на них будут иметь следующий вид:

$$\sigma_{3m}^{(1)} = 0$$
 при $\alpha_3 = h$, $\sigma_{3m}^{(n)} = 0$ при $\alpha_3 = -h$. (6)

На поверхностях раздела слоев зададим условия полного контакта:

$$\sigma_{3m}^{(p)} = \sigma_{3m}^{(p+1)}, \quad v_m^{(p)} = v_m^{(p+1)} \quad \text{при} \quad \alpha_3 = z_p.$$
(7)

Вывод уравнений для приближенных теорий будет осуществляться с помощью метода асимптотического интегрирования уравнений (3), (4), основанного на малости геометрического параметра $\eta = h/R$ (R — характерное значение радиусов кривизны срединной поверхности).

Введем масштабированные переменные

$$\alpha_i = R\eta^q \xi_i, \qquad \alpha_3 = R\eta\zeta, \qquad t = Rc_{2,1}^{-1}\eta^a\tau, \tag{8}$$

где q — показатель изменяемости, a — показатель динамичности (см. [1,3]). Предположим, что дифференцирование по безразмерным переменным ξ_i , ζ , τ не меняет асимптотического порядка неизвестных величин. В безразмерных переменных уравнения (3), (4) запишутся в виде

$$\eta^{-q} \left(\frac{1}{H_i} \frac{\partial \sigma_{ii}^{(k)}}{\partial \xi_i} + \frac{1}{H_j} \frac{\partial \sigma_{ji}^{(k)}}{\partial \xi_j} \right) + \eta^{-1} \frac{\partial \sigma_{3i}^{(k)}}{\partial \zeta} + \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_i} \left(\sigma_{ii}^{(k)} - \sigma_{jj}^{(k)} \right) + \frac{R}{H_i H_j} \times \frac{\partial H_i}{\partial \xi_i} \left(\sigma_{ij}^{(k)} + \sigma_{ji}^{(k)} \right) + \frac{R}{H_i H_j} \frac{\partial H_i H_j}{\partial \alpha_3} \sigma_{3i}^{(k)} + \frac{R}{H_i} \frac{\partial H_i}{\partial \alpha_3} \sigma_{i3}^{(k)} - \eta^{-2a} \frac{E_k}{2(1+\nu_k)R} \frac{\partial^2 v_i^{(k)}}{\partial \tau^2} = 0, \quad (9)$$

$$\eta^{-q} \left(\frac{1}{H_i} \frac{\partial \sigma_{i3}^{(k)}}{\partial \xi_i} + \frac{1}{H_j} \frac{\partial \sigma_{j3}^{(k)}}{\partial \xi_j} \right) + \eta^{-1} \frac{\partial \sigma_{33}^{(k)}}{\partial \zeta} - \frac{R}{H_i} \frac{\partial H_i}{\partial \alpha_3} \sigma_{ii}^{(k)} - \frac{R}{H_j} \frac{\partial H_j}{\partial \alpha_3} \sigma_{jj}^{(k)} + \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_3} \sigma_{i3}^{(k)} + \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_i} \sigma_{i3}^{(k)} + \frac{R}{H_i H_j} \frac{\partial H_i}{\partial \alpha_j} \sigma_{j3}^{(k)} - \eta^{-2a} \frac{E_k}{2(1+\nu_k)R} \frac{\partial^2 v_3^{(k)}}{\partial \tau^2} = 0$$

И

$$\sigma_{ii}^{(k)} = \frac{E_k}{(1-\nu_k^2)R} \left[\left(\eta^{-q} \frac{1}{H_i} \frac{\partial v_i^{(k)}}{\partial \xi_i} + \frac{R}{H_i H_j} \frac{\partial H_i}{\partial \alpha_j} v_j^{(k)} + \frac{R}{H_j} \frac{\partial H_i}{\partial \alpha_3} v_3^{(k)} \right) + \frac{\nu_k}{1-\nu_k} \sigma_{33}^{(k)} \right] + \frac{\nu_k}{H_j} \frac{\partial v_j^{(k)}}{\partial \xi_j} + \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_i} v_i^{(k)} + \frac{R}{H_j} \frac{\partial H_j}{\partial \alpha_3} v_3^{(k)} \right] + \frac{\nu_k}{1-\nu_k} \sigma_{33}^{(k)},$$

$$\eta^{-1} \frac{E_k}{R} \frac{\partial v_3^{(k)}}{\partial \zeta} = \sigma_{33}^{(k)} - \nu_k \left(\sigma_{ii}^{(k)} + \sigma_{jj}^{(k)} \right),$$

$$(10)$$

$$\frac{E_k}{2(1+\nu_k)} \left[\eta^{-q} \frac{1}{H_i} \frac{\partial v_3^{(k)}}{\partial \xi_i} + \eta^{-q} \frac{1}{H_i} \frac{\partial v_j^{(k)}}{\partial \alpha_i} - \frac{R}{H_i H_j} \frac{\partial H_i}{\partial \alpha_j} v_i^{(k)} - \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_i} v_j^{(k)} \right] = \sigma_{ij}^{(k)}.$$

$$\frac{E_k}{2(1+\nu_k)} \left[\eta^{-q} \frac{1}{H_j} \frac{\partial v_j^{(k)}}{\partial \xi_j} + \eta^{-q} \frac{1}{H_i} \frac{\partial v_j^{(k)}}{\partial \alpha_i} - \frac{R}{H_i H_j} \frac{\partial H_i}{\partial \alpha_j} v_i^{(k)} - \frac{R}{H_i H_j} \frac{\partial H_j}{\partial \alpha_i} v_j^{(k)} \right] = \sigma_{ij}^{(k)}.$$

Научный отдел

Введение переменных (8) позволяет вывести асимптотически приближенные уравнения для составляющих напряженно-деформированного состояния (НДС) при различных показателях изменяемости и динамичности. Остановимся на случае длинноволновых низкочастотных приближений, для которых q < 1, a < 1. Эти приближения разделяются на два типа: тангенциальные и поперечные. В первом случае тангенциальные компоненты вектора перемещений велики по сравнению с нормальной компонентой $v_i >> v_3$. Во втором случае имеет место противоположная ситуация: $v_3 >> v_i$. Приведем

2. ТАНГЕНЦИАЛЬНЫЕ НИЗКОЧАСТОТНЫЕ ДЛИННОВОЛНОВЫЕ ПРИБЛИЖЕНИЯ

вывод тангенциальных и поперечных приближений в случае многослойной оболочки.

При построении тангенциального приближения следует положить q = a. Возьмем асимптотику НДС в виде

$$v_{i}^{(k)} = R(\eta^{q} v_{i}^{0(k)} + \eta^{1+q} v_{i}^{1(k)}), \qquad v_{3}^{(k)} = R(\eta v_{3}^{0(k)} + \eta^{2q} v_{3}^{1(k)}),$$

$$\sigma_{ii}^{(k)} = E_{k}(\sigma_{ii}^{0(k)} + \eta \sigma_{ii}^{1(k)}), \qquad \sigma_{ij}^{(k)} = E_{k}(\sigma_{ij}^{0(k)} + \eta \sigma_{ij}^{1(k)}),$$

$$\sigma_{3i}^{(k)} = E_{k}(\eta^{1-q} \sigma_{3i}^{0(k)} + \eta^{2-q} \sigma_{3i}^{1(k)}), \qquad \sigma_{33}^{(k)} = E_{k}(\eta^{2-2q} \sigma_{33}^{0(k)} + \eta \sigma_{33}^{1(k)}).$$
(11)

Здесь предполагается, что величины с индексами «0» и «1» имеют один и тот же асимптотический порядок. В формулах (11) НДС оболочки разделяется на основную и дополнительную компоненты. Основное НДС (индекс «0») аналогично НДС плоского слоя, дополнительное (индекс «1») — результат влияния кривизны оболочки. От случая однородной оболочки (см. [1,3]) асимптотика (11) отличается представлениями для напряжений $\sigma_{3i}^{(k)}$ и $\sigma_{33}^{(k)}$. Подставим (11) в уравнения (9), (10) и отбросим величины порядка $O(\eta^{2-2q})$. При этом используем следующие разложения в ряды по степеням ζ :

$$\frac{1}{H_i} = \frac{1}{A_i} \left[1 - \eta \frac{\zeta}{R_i^*} + O\left(\eta^2\right) \right], \qquad \frac{1}{H_i H_j} = \frac{1}{A_i A_j} \left[1 - \eta \zeta \left(\frac{1}{R_i^*} + \frac{1}{R_j^*} \right) + O\left(\eta^2\right) \right], \tag{12}$$

где $R_i^* = R_i/R$. Приравнивая члены одинакового порядка по η , получим системы уравнений относительно величин с индексами «О» и «1». Приведем систему относительно компонент $v_i^{0(k)}$, $v_3^{1(k)}$, $\sigma_{3i}^{0(k)}$, $\sigma_{3i}^{1(k)}$, $\sigma_{ij}^{0(k)}$, $\sigma_{ij}^{0(k)}$.

$$\frac{1}{A_{i}} \frac{\partial \sigma_{ii}^{0(k)}}{\partial \xi_{i}} + \frac{1}{A_{j}} \frac{\partial \sigma_{ji}^{0(k)}}{\partial \xi_{j}} + \frac{\partial \sigma_{3i}^{0(k)}}{\partial \zeta} + \eta^{q} \frac{R}{A_{i}A_{j}} \frac{\partial A_{j}}{\partial \alpha_{i}} \left(\sigma_{ii}^{0(k)} - \sigma_{jj}^{0(k)} \right) + \\
+ \eta^{q} \frac{R}{A_{i}A_{j}} \frac{\partial A_{i}}{\partial \alpha_{j}} \left(\sigma_{ij}^{0(k)} + \sigma_{ji}^{0(k)} \right) - \frac{1}{2(1+\nu_{k})} \theta_{k}^{2} \frac{\partial^{2} v_{i}^{0(k)}}{\partial \tau^{2}} = 0, \\
\frac{1}{R_{i}^{*}} \sigma_{ii}^{0(k)} + \frac{1}{R_{j}^{*}} \sigma_{jj}^{0(k)} + \frac{\partial \sigma_{33}^{1(k)}}{\partial \zeta} + \frac{1}{2(1+\nu_{k})} \theta_{k}^{2} \frac{\partial^{2} v_{3}^{1(k)}}{\partial \tau^{2}} = 0, \\
\tau_{ii}^{0(k)} = \frac{1}{1-\nu_{k}^{2}} \left[\frac{1}{A_{i}} \frac{\partial v_{i}^{0(k)}}{\partial \xi_{i}} + \nu_{k} \frac{1}{A_{j}} \frac{\partial v_{j}^{0(k)}}{\partial \xi_{j}} + \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{j}} v_{j}^{0(k)} + \nu_{k} \frac{\partial A_{j}}{\partial \alpha_{i}} v_{i}^{0(k)} \right) + \\
+ \eta^{2q} \left(\frac{1}{R_{i}^{*}} + \frac{\nu_{k}}{R_{j}^{*}} \right) v_{3}^{1(k)} \right], \tag{13}$$

$$\sigma_{ij}^{0(k)} = \frac{1}{2(1+\nu_{k})} \left[\frac{1}{A_{j}} \frac{\partial v_{i}^{0(k)}}{\partial \xi_{j}} + \frac{1}{A_{i}} \frac{\partial v_{j}^{0(k)}}{\partial \xi_{i}} - \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{j}} v_{i}^{0(k)} + \frac{\partial A_{j}}{\partial \alpha_{i}} v_{j}^{0(k)} \right) \right], \\
\frac{\partial v_{3}^{1(k)}}{\partial \zeta} = 0, \qquad \frac{\partial v_{i}^{0(k)}}{\partial \zeta} = 0,$$

где $heta_k^2 = c_{2,1}^2/c_{2,k}^2.$

Интегрируя полученные системы, установим зависимость компонент НДС от координаты ζ :

$$v_i^{0(k)} = v_{i,0}^{0(k)}, \qquad v_i^{1(k)} = v_{i,0}^{1(k)} + \zeta v_{i,1}^{1(k)}, \qquad v_3^{0(k)} = v_{3,0}^{0(k)} + \zeta v_{3,1}^{0(k)}, \qquad v_3^{1(k)} = v_{3,0}^{1(k)}, \\ \sigma_{ii}^{0(k)} = \sigma_{ii,0}^{0(k)}, \qquad \sigma_{ii}^{1(k)} = \sigma_{ii,0}^{1(k)} + \zeta \sigma_{ii,1}^{1(k)}, \qquad \sigma_{ij}^{0(k)} = \sigma_{ij,0}^{0(k)}, \qquad \sigma_{ij}^{1(k)} = \sigma_{ij,0}^{1(k)} + \zeta \sigma_{ij,1}^{1(k)}, \qquad (14)$$

$$\begin{split} &\sigma_{3i}^{0(k)} = \sigma_{3i,0}^{0(k)} + \zeta \sigma_{3i,1}^{0(k)}, \qquad \sigma_{3i}^{1(k)} = \sigma_{3i,0}^{1(k)} + \zeta \sigma_{3i,1}^{1(k)} + \zeta^2 \sigma_{3i,2}^{1(k)}, \\ &\sigma_{33}^{0(k)} = \sigma_{33,0}^{0(k)} + \zeta \sigma_{33,1}^{0(k)} + \zeta^2 \sigma_{33,2}^{0(k)}, \qquad \sigma_{33}^{1(k)} = \sigma_{33,0}^{1(k)} + \zeta \sigma_{33,1}^{1(k)}. \end{split}$$

Все величины, стоящие в правых частях (14) с запятой в нижнем индексе, являются функциями, не зависящими от ζ . Система относительно асимптотически главных компонент $v_{i,0}^{0(k)}$, $v_{3,0}^{1(k)}$, $\sigma_{ii,0}^{0(k)}$, $\sigma_{ij,0}^{0(k)}$ записывается следующим образом:

$$\frac{1}{A_{i}} \frac{\partial \sigma_{ii,0}^{0(k)}}{\partial \xi_{i}} + \frac{1}{A_{j}} \frac{\partial \sigma_{ji,0}^{0(k)}}{\partial \xi_{j}} + \sigma_{3i,1}^{0(k)} + \eta^{q} \frac{R}{A_{i}A_{j}} \frac{\partial A_{j}}{\partial \alpha_{i}} \left(\sigma_{ii,0}^{0(k)} - \sigma_{jj,0}^{0(k)} \right) + \\
+ \eta^{q} \frac{R}{A_{i}A_{j}} \frac{\partial A_{i}}{\partial \alpha_{j}} \left(\sigma_{ij,0}^{0(k)} + \sigma_{ji,0}^{0(k)} \right) - \frac{1}{2(1+\nu_{k})} \theta_{k}^{2} \frac{\partial^{2} v_{i,0}^{0(k)}}{\partial \tau^{2}} = 0, \\
\frac{1}{R_{i}^{*}} \sigma_{ii,0}^{0(k)} + \frac{1}{R_{j}^{*}} \sigma_{jj,0}^{0(k)} + \sigma_{33,1}^{1(k)} + \frac{1}{2(1+\nu_{k})} \theta_{k}^{2} \frac{\partial^{2} v_{3,0}^{1(k)}}{\partial \tau^{2}} = 0, \quad (15)$$

$$\sigma_{ii,0}^{0(k)} = \frac{1}{1 - \nu_k^2} \left[\frac{1}{A_i} \frac{\partial v_{i,0}^{0(k)}}{\partial \xi_i} + \nu_k \frac{1}{A_j} \frac{\partial v_{j,0}^{0(k)}}{\partial \xi_j} + \eta^q \frac{R}{A_i A_j} \left(\frac{\partial A_i}{\partial \alpha_j} v_{j,0}^{0(k)} + \nu_k \frac{\partial A_j}{\partial \alpha_i} v_{i,0}^{0(k)} \right) + \eta^{2q} \left(\frac{1}{R_i^*} + \frac{\nu_k}{R_j^*} \right) v_{3,0}^{1(k)} \right]$$

$$\sigma_{ij,0}^{0(k)} = \frac{1}{2(1 + \nu_k)} \left[\frac{1}{A_j} \frac{\partial v_{i,0}^{0(k)}}{\partial \xi_j} + \frac{1}{A_i} \frac{\partial v_{j,0}^{0(k)}}{\partial \xi_i} - \eta^q \frac{R}{A_i A_j} \left(\frac{\partial A_i}{\partial \alpha_j} v_{i,0}^{0(k)} + \frac{\partial A_j}{\partial \alpha_i} v_{j,0}^{0(k)} \right) \right].$$

Подставим представления (11) в граничные условия (6), (7). Учитывая зависимости (14), получим

$$\begin{split} \sigma_{3i,0}^{0(1)} &= -\sigma_{3i,1}^{0(1)}, \qquad \sigma_{33,0}^{0(1)} + \sigma_{33,1}^{0(1)} + \sigma_{33,2}^{0(1)} = 0, \qquad \sigma_{3i,0}^{1(1)} + \sigma_{3i,1}^{1(1)} + \sigma_{3i,2}^{1(1)} = 0, \qquad \sigma_{33,0}^{1(1)} = -\sigma_{33,1}^{1(1)}, \\ \sigma_{3i,0}^{0(n)} &= \sigma_{3i,1}^{0(n)}, \qquad \sigma_{33,0}^{0(n)} - \sigma_{33,1}^{0(n)} + \sigma_{33,2}^{0(n)} = 0, \qquad \sigma_{3i,0}^{1(n)} - \sigma_{3i,1}^{1(n)} + \sigma_{3i,2}^{1(n)} = 0, \qquad \sigma_{33,0}^{1(n)} = \sigma_{33,1}^{1(n)}, \\ E_p(\sigma_{3i,0}^{0(p)} + r_p\sigma_{3i,1}^{0(p)}) = E_{p+1}(\sigma_{3i,0}^{0(p+1)} + r_p\sigma_{3i,1}^{0(p+1)}), \\ E_p(\sigma_{33,0}^{0(p)} + r_p\sigma_{33,1}^{0(p)} + r_p^2\sigma_{33,2}^{0(p)}) = E_{p+1}(\sigma_{33,0}^{0(p+1)} + r_p\sigma_{33,1}^{0(p+1)} + r_p^2\sigma_{33,2}^{0(p+1)}), \\ E_p(\sigma_{3i,0}^{1(p)} + r_p\sigma_{3i,1}^{1(p)} + r_p^2\sigma_{3i,2}^{1(p)}) = E_{p+1}(\sigma_{3i,0}^{1(p+1)} + r_p\sigma_{3i,1}^{1(p+1)} + r_p^2\sigma_{3i,2}^{1(p+1)}), \\ E_p(\sigma_{3i,0}^{1(p)} + r_p\sigma_{3i,1}^{1(p)}) = E_{p+1}(\sigma_{3i,0}^{1(p+1)} + r_p\sigma_{3i,1}^{1(p+1)} + r_p^2\sigma_{3i,2}^{1(p+1)}), \\ E_p(\sigma_{3i,0}^{1(p)} + r_p\sigma_{3i,1}^{1(p)}) = E_{p+1}(\sigma_{3i,0}^{1(p+1)} + r_p\sigma_{3i,1}^{1(p+1)}), \\ v_{i,0}^{0(p)} = v_{i,0}^{0(p+1)}, \qquad v_{i,0}^{1(p)} + r_pv_{i,1}^{1(p)} = v_{i,0}^{1(p+1)} + r_pv_{i,1}^{1(p+1)}, \\ v_{i,0}^{0(p)} + r_pv_{3,1}^{0(p)} = v_{3,0}^{0(p+1)} + r_pv_{3,1}^{0(p+1)}, \qquad v_{i,0}^{1(p)} = v_{3,0}^{1(p+1)}, \\ v_{i,0}^{0(p)} + r_pv_{3,1}^{0(p)} = v_{3,0}^{0(p+1)} + r_pv_{3,1}^{0(p+1)}, \end{cases}$$

где $r_p = z_p/h$. Уравнения для двумерных величин с запятой в нижнем индексе, полученные в ходе асимптотического интегрирования, и соотношения (16) образуют замкнутую систему уравнений, из которой можно определить все величины, входящие в представления (14). Из (16) получаем, что величины $v_{i,0}^{0(k)}$, $v_{3,0}^{1(k)}$ не зависят от k. Последовательно выражая функции $\sigma_{3i,0}^{0(k)}$, $\sigma_{33,0}^{1(k)}$ через $\sigma_{3i,1}^{0(k)}$, $\sigma_{33,1}^{1(k)}$ соответственно, придем к соотношениям

$$\sum_{k=1}^{n} h_k E_k \sigma_{3i,1}^{0(k)} = 0, \qquad \sum_{k=1}^{n} h_k E_k \sigma_{33,1}^{1(k)} = 0.$$
(17)

Получим двумерную форму записи разрешающей системы. С этой целью первые уравнения системы (15) умножим на $2h_k E_k$ и просуммируем по k. Введем обозначения

$$T_{i} = \sum_{k=1}^{n} 2h_{k} E_{k} \sigma_{ii,0}^{0(k)}, \qquad S_{ij} = \sum_{k=1}^{n} 2h_{k} E_{k} \sigma_{ij,0}^{0(k)}, \qquad u_{i} = R\eta^{q} v_{i,0}^{0(k)}, \qquad w = R\eta^{2q} v_{3,0}^{1(k)}, \tag{18}$$

а также усредненную плотность

$$\rho = \frac{1}{h} \sum_{k=1}^{n} h_k \rho_k.$$
(19)

Научный отдел

Учитывая (17) и переходя к исходным размерным переменным, будем иметь

$$\frac{1}{A_i}\frac{\partial T_i}{\partial \alpha_i} + \frac{1}{A_j}\frac{\partial S_{ij}}{\partial \alpha_j} + k_j \left(T_i - T_j\right) + 2k_i S_{ij} - 2\rho h \frac{\partial^2 u_i}{\partial t^2} = 0, \qquad \frac{T_1}{R_1} + \frac{T_2}{R_2} + 2\rho h \frac{\partial^2 w}{\partial t^2} = 0,$$

$$T_i = B_1 \left(\frac{1}{A_i}\frac{\partial u_i}{\partial \alpha_i} + k_i u_j + \frac{w}{R_i}\right) + B_2 \left(\frac{1}{A_j}\frac{\partial u_j}{\partial \alpha_j} + k_j u_i + \frac{w}{R_j}\right),$$

$$S_{ij} = B_3 \left(\frac{A_i}{A_j}\frac{\partial}{\partial \alpha_j} \left(\frac{u_i}{A_i}\right) + \frac{A_j}{A_i}\frac{\partial}{\partial \alpha_i} \left(\frac{u_j}{A_j}\right)\right),$$
(20)

где

$$k_i = \frac{1}{A_i A_j} \frac{\partial A_i}{\partial \alpha_j}, \qquad B_1 = 2\sum_{k=1}^n \frac{h_k E_k}{1 - \nu_k^2}, \qquad B_2 = 2\sum_{k=1}^n \frac{h_k \nu_k E_k}{1 - \nu_k^2}, \qquad B_3 = \sum_{k=1}^n \frac{h_k E_k}{1 + \nu_k}.$$

Из уравнений (20) следует выражение для скорости волны расширения в многослойной оболочке по двумерной теории:

$$c_3 = \sqrt{\frac{B_1}{2h\rho}}.$$
(21)

3. ПОПЕРЕЧНЫЕ НИЗКОЧАСТОТНЫЕ ДЛИННОВОЛНОВЫЕ ПРИБЛИЖЕНИЯ

При построении поперечного приближения следует положить a = 2q - 1, $1/2 \le q < 1$. Возьмем асимптотику НДС в виде

$$v_{i}^{(k)} = R(\eta v_{i}^{0(k)} + \eta^{2q} v_{i}^{1(k)}), \qquad v_{3}^{(k)} = R(\eta^{q} v_{3}^{0(k)} + \eta^{q+1} v_{3}^{1(k)}),$$

$$\sigma_{ii}^{(k)} = E_{k}(\eta^{1-q} \sigma_{ii}^{0(k)} + \eta^{q} \sigma_{ii}^{1(k)}), \qquad \sigma_{ij}^{(k)} = E_{k}(\eta^{1-q} \sigma_{ij}^{0(k)} + \eta^{q} \sigma_{ij}^{1(k)}),$$

$$\sigma_{3i}^{(k)} = E_{k}(\eta^{2-2q} \sigma_{3i}^{0(k)} + \eta \sigma_{3i}^{1(k)}), \qquad \sigma_{33}^{(k)} = E_{k}(\eta^{3-3q} \sigma_{33}^{0(k)} + \eta^{2-q} \sigma_{33}^{1(k)}).$$
(22)

Асимптотика (22) отличается от случая однородной оболочки представлением для напряжения $\sigma_{3i}^{(k)}$. Подставим (22) в уравнения (9), (10) и повторим процесс, описанный выше для случая тангенциального приближения. Будем иметь следующие системы:

$$\frac{1}{A_{i}} \frac{\partial \sigma_{ii}^{0(k)}}{\partial \xi_{i}} + \frac{1}{A_{j}} \frac{\partial \sigma_{ji}^{0(k)}}{\partial \xi_{j}} + \frac{\partial \sigma_{3i}^{0(k)}}{\partial \zeta} + \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{j}}{\partial \alpha_{i}} \left(\sigma_{ii}^{0(k)} - \sigma_{jj}^{0(k)} \right) + \frac{\partial A_{i}}{\partial \alpha_{j}} \left(\sigma_{ij}^{0(k)} + \sigma_{ji}^{0(k)} \right) \right) = 0, \\
\frac{1}{A_{i}} \frac{\partial \sigma_{3i}^{0(k)}}{\partial \xi_{i}} + \frac{1}{A_{j}} \frac{\partial \sigma_{j3}^{0(k)}}{\partial \xi_{j}} + \frac{\partial \sigma_{33}^{0(k)}}{\partial \zeta} + \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{j}}{\partial \alpha_{i}} \sigma_{3i}^{0(k)} + \frac{\partial A_{i}}{\partial \alpha_{j}} \sigma_{j3}^{0(k)} \right) - \\
-\eta^{4q-2} \left(\frac{\sigma_{ii}^{1(k)}}{R_{i}^{*}} + \frac{\sigma_{jj}^{1(k)}}{R_{j}^{*}} \right) - \frac{\theta_{k}^{2}}{2(1+\nu_{k})} \frac{\partial^{2}v_{3}^{0(k)}}{\partial \tau^{2}} = 0, \quad (23) \\
\sigma_{ii}^{0(k)} = \frac{1}{1-\nu_{k}^{2}} \left[\frac{1}{A_{i}} \frac{\partial v_{i}^{0(k)}}{\partial \xi_{i}} + \nu_{k} \frac{1}{A_{j}} \frac{\partial v_{j}^{0(k)}}{\partial \xi_{j}} + \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{i}} v_{j}^{0(k)} + \nu_{k} \frac{\partial A_{j}}{\partial \alpha_{i}} v_{i}^{0(k)} \right) \right], \\
\sigma_{ij}^{0(k)} = \frac{1}{2(1+\nu_{k})} \left[\frac{1}{A_{j}} \frac{\partial v_{i}^{0(k)}}{\partial \xi_{j}} + \frac{1}{A_{i}} \frac{\partial v_{j}^{0(k)}}{\partial \xi_{i}} - \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{j}} v_{i}^{0(k)} + \frac{\partial A_{j}}{\partial \alpha_{i}} v_{j}^{0(k)} \right) \right], \\
\frac{\partial v_{i}^{0(k)}}{\partial \zeta} = 0, \quad \frac{1}{A_{i}} \frac{\partial v_{i}^{0(k)}}{\partial \xi_{i}} + \frac{\partial v_{i}^{0(k)}}{\partial \zeta} = 0$$

И

$$\frac{1}{A_i} \frac{\partial \sigma_{ii}^{1(k)}}{\partial \xi_i} + \frac{1}{A_j} \frac{\partial \sigma_{ji}^{1(k)}}{\partial \xi_j} + \frac{\partial \sigma_{3i}^{1(k)}}{\partial \zeta} + \eta^q \frac{R}{A_i A_j} \left(\frac{\partial A_j}{\partial \alpha_i} \left(\sigma_{ii}^{1(k)} - \sigma_{jj}^{1(k)} \right) + \frac{\partial A_i}{\partial \alpha_j} \left(\sigma_{ij}^{1(k)} + \sigma_{ji}^{1(k)} \right) \right) = 0,$$

$$\frac{1}{A_i} \frac{\partial \sigma_{3i}^{1(k)}}{\partial \xi_i} + \frac{1}{A_j} \frac{\partial \sigma_{j3}^{1(k)}}{\partial \xi_j} + \frac{\partial \sigma_{33}^{1(k)}}{\partial \zeta} + \eta^q \frac{R}{A_i A_j} \left(\frac{\partial A_j}{\partial \alpha_i} \sigma_{3i}^{1(k)} + \frac{\partial A_i}{\partial \alpha_j} \sigma_{j3}^{1(k)} \right) - \left(\frac{\sigma_{ii}^{0(k)}}{R_i^*} + \frac{\sigma_{jj}^{0(k)}}{R_j^*} \right) = 0,$$

$$\sigma_{ii}^{1(k)} = \frac{1}{1 - \nu_k^2} \left[\frac{1}{A_i} \frac{\partial v_i^{1(k)}}{\partial \xi_i} + \nu_k \frac{1}{A_j} \frac{\partial v_j^{1(k)}}{\partial \xi_j} + \left(\frac{1}{R_i^*} + \frac{\nu_k}{R_i^*} \right) v_3^{0(k)} + \frac{1}{2} \right]$$

$$+ \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{j}} v_{j}^{1(k)} + \nu_{k} \frac{\partial A_{j}}{\partial \alpha_{i}} v_{i}^{1(k)} \right) \right],$$

$$\sigma_{ij}^{1(k)} = \frac{1}{2(1+\nu_{k})} \left[\frac{1}{A_{j}} \frac{\partial v_{i}^{1(k)}}{\partial \xi_{j}} + \frac{1}{A_{i}} \frac{\partial v_{j}^{1(k)}}{\partial \xi_{i}} - \eta^{q} \frac{R}{A_{i}A_{j}} \left(\frac{\partial A_{i}}{\partial \alpha_{j}} v_{i}^{1(k)} + \frac{\partial A_{j}}{\partial \alpha_{i}} v_{j}^{1(k)} \right) \right],$$

$$\frac{\partial v_{i}^{1(k)}}{\partial \zeta} = 0, \frac{\partial v_{3}^{1(k)}}{\partial \zeta} = -\nu_{k} (\sigma_{ii}^{1(k)} + \sigma_{jj}^{1(k)}).$$

$$(24)$$

Из (23) и (24) получим следующие зависимости для компонент НДС от нормальной координаты:

$$v_{i}^{0(k)} = v_{i,0}^{0(k)} + \zeta v_{i,1}^{0(k)}, \quad v_{i}^{1(k)} = v_{i,0}^{1(k)}, \quad v_{3}^{0(k)} = v_{3,0}^{0(k)}, \quad v_{3}^{1(k)} = v_{3,0}^{1(k)} + \zeta v_{3,1}^{1(k)},$$

$$\sigma_{ii}^{0(k)} = \sigma_{ii,0}^{0(k)} + \zeta \sigma_{ii,1}^{0(k)}, \quad \sigma_{ii}^{1(k)} = \sigma_{ii,0}^{1(k)}, \quad \sigma_{ij}^{0(k)} = \sigma_{ij,0}^{0(k)} + \zeta \sigma_{ij,1}^{0(k)}, \quad \sigma_{ij}^{1(k)} = \sigma_{ij,0}^{1(k)},$$

$$\sigma_{3i}^{0(k)} = \sigma_{3i,0}^{0(k)} + \zeta \sigma_{3i,1}^{0(k)} + \zeta^{2} \sigma_{3i,2}^{0(k)}, \quad \sigma_{3i}^{1(k)} = \sigma_{3i,0}^{1(k)} + \zeta \sigma_{3i,1}^{1(k)},$$

$$\sigma_{33}^{0(k)} = \sigma_{33,0}^{0(k)} + \zeta \sigma_{33,1}^{0(k)} + \zeta^{2} \sigma_{33,2}^{0(k)} + \zeta^{3} \sigma_{33,3}^{0(k)}, \quad \sigma_{33}^{1(k)} = \sigma_{33,0}^{1(k)} + \zeta \sigma_{33,1}^{1(k)} + \zeta^{2} \sigma_{33,2}^{1(k)}.$$
(25)

Получена система уравнений, связывающая величины с запятой в нижнем индексе, не зависящие от ζ . Чтобы замкнуть эту систему, надо использовать граничные условия. Подставляя (22), (25) в (6), (7), будем иметь

$$\begin{aligned} & \sigma_{3i,0}^{0(1)} + \sigma_{3i,1}^{0(1)} + \sigma_{3i,2}^{0(1)} = 0, \qquad \sigma_{3i,0}^{1(1)} + \sigma_{3i,1}^{1(1)} = 0, \\ & \sigma_{33,0}^{0(1)} + \sigma_{33,1}^{0(1)} + \sigma_{33,2}^{0(1)} + \sigma_{33,3}^{0(1)} = 0, \qquad \sigma_{33,0}^{1(1)} + \sigma_{3i,1}^{1(1)} + \sigma_{33,2}^{1(1)} = 0, \\ & \sigma_{3i,0}^{0(n)} - \sigma_{3i,1}^{0(n)} + \sigma_{3i,2}^{0(n)} = 0, \qquad \sigma_{3i,0}^{1(n)} - \sigma_{3i,1}^{1(n)} = 0, \\ & \sigma_{33,0}^{0(n)} - \sigma_{33,1}^{0(n)} + \sigma_{33,2}^{0(n)} - \sigma_{33,3}^{0(n)} = 0, \qquad \sigma_{33,0}^{1(n)} - \sigma_{3i,1}^{1(n)} + \sigma_{33,2}^{1(n)} = 0, \\ & \sigma_{33,0}^{0(n)} - \sigma_{3i,1}^{0(n)} + r_{p}\sigma_{3i,2}^{0(p)} - \sigma_{33,3}^{0(n)} = 0, \qquad \sigma_{33,0}^{1(n)} - \sigma_{3i,1}^{1(n)} + \sigma_{33,2}^{1(n)} = 0, \\ & E_{p}(\sigma_{3i,0}^{0(p)} + r_{p}\sigma_{3i,1}^{0(p)} + r_{p}^{2}\sigma_{3i,2}^{0(p)}) = E_{p+1}(\sigma_{3i,0}^{0(p+1)} + r_{p}\sigma_{3i,1}^{0(p+1)} + r_{p}^{2}\sigma_{3i,2}^{0(p+1)}), \\ & E_{p}(\sigma_{3i,0}^{1(p)} + r_{p}\sigma_{33,1}^{1(p)}) = E_{p+1}(\sigma_{3i,0}^{1(p+1)} + r_{p}\sigma_{3i,1}^{1(p+1)}), \\ & E_{p}(\sigma_{33,0}^{0(p)} + r_{p}\sigma_{33,1}^{0(p)} + r_{p}^{2}\sigma_{33,2}^{1(p)}) = E_{p+1}(\sigma_{33,0}^{1(p+1)} + r_{p}\sigma_{33,1}^{1(p+1)} + r_{p}^{2}\sigma_{33,2}^{0(p+1)}), \\ & E_{p}(\sigma_{33,0}^{1(p)} + r_{p}\sigma_{33,1}^{1(p)} + r_{p}^{2}\sigma_{33,2}^{1(p)}) = E_{p+1}(\sigma_{33,0}^{1(p+1)} + r_{p}\sigma_{33,1}^{1(p+1)} + r_{p}^{2}\sigma_{33,2}^{1(p+1)}), \\ & E_{p}(\sigma_{33,0}^{1(p)} + r_{p}\sigma_{33,1}^{1(p)} + r_{p}^{2}\sigma_{33,2}^{1(p)}) = E_{p+1}(\sigma_{33,0}^{1(p+1)} + r_{p}\sigma_{33,1}^{1(p+1)} + r_{p}^{2}\sigma_{33,2}^{1(p+1)}), \\ & E_{p}(\sigma_{33,0}^{1(p)} + r_{p}\sigma_{33,1}^{1(p)} + r_{p}^{2}\sigma_{33,2}^{1(p)}) = E_{p+1}(\sigma_{33,0}^{1(p+1)} + r_{p}\sigma_{33,1}^{1(p)} + r_{p}^{2}\sigma_{33,2}^{1(p+1)}), \\ & v_{i,0}^{0(p)} + r_{p}v_{i,1}^{0(p)} = v_{i,0}^{0(p+1)} + r_{p}v_{i,1}^{0(p)} = v_{i,0}^{1(p+1)}, \\ & v_{3,0(p)} = v_{3,0}^{0(p+1)}, \quad v_{3,0}^{1(p)} + r_{p}v_{3,1}^{1(p)} = v_{3,0}^{1(p+1)} + r_{p}v_{3,1}^{1(p+1)}. \end{aligned}$$

Из (26) получаем, что функции $v_{3,0}^{0(k)}$, $v_{i,0}^{1(k)}$ не зависят от k. Поскольку в силу последнего уравнения (23) имеет место соотношение

$$v_{i,1}^{0(k)} = -\frac{1}{A_i} \frac{\partial v_{3,0}^{0(k)}}{\partial \xi_i},$$
(27)

величина $v_{i,1}^{0(k)}$ также не зависит от k.

Получим разрешающую систему в двумерной форме. Умножим первое уравнение (23) на η^{2q-1} и сложим с первым уравнением (24). Учитывая (22), получим уравнение, которое в исходных размерных переменных имеет вид

$$\frac{1}{A_i}\frac{\partial\sigma_{ii}^{(k)}}{\partial\alpha_i} + \frac{1}{A_j}\frac{\partial\sigma_{ji}^{(k)}}{\partial\alpha_j} + k_j\left(\sigma_{ii}^{(k)} - \sigma_{jj}^{(k)}\right) + k_i\left(\sigma_{ij}^{(k)} + \sigma_{ji}^{(k)}\right) + \frac{\partial\sigma_{3i}^{(k)}}{\partial\alpha_3} = 0.$$
(28)

Введем усилия и моменты по следующим формулам:

$$T_{i} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \sigma_{ii}^{(k)} d\alpha_{3}, \qquad S_{ij} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \sigma_{ij}^{(k)} d\alpha_{3}, \qquad G_{i} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \sigma_{ii}^{(k)} \alpha_{3} d\alpha_{3},$$
$$H_{ij} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \alpha_{3} \sigma_{ij}^{(k)} d\alpha_{3}, \qquad N_{i} = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \sigma_{3i}^{(k)} d\alpha_{3}.$$
(29)

Научный отдел

Проинтегрируем (28) по α_3 . Из граничных условий (6), (7) имеем

$$\sum_{k=1}^{n} \int_{z_{k}}^{z_{k-1}} \frac{\partial \sigma_{3i}^{(k)}}{\partial \alpha_{3}} d\alpha_{3} = 0.$$
(30)

Тогда получим первые уравнения разрешающей системы в виде

$$\frac{1}{A_i}\frac{\partial T_i}{\partial \alpha_i} + \frac{1}{A_j}\frac{\partial S_{ij}}{\partial \alpha_j} + k_j \left(T_i - T_j\right) + 2k_i S_{ij} = 0.$$
(31)

Умножая (28) на α_3 и интегрируя по этой переменной, получим

$$\frac{1}{A_i}\frac{\partial G_i}{\partial \alpha_i} + \frac{1}{A_j}\frac{\partial H_{ij}}{\partial \alpha_j} + k_j \left(G_i - G_j\right) + 2k_i H_{ij} - N_i = 0.$$
(32)

Применим аналогичную схему для вывода последнего уравнения. С этой целью нужно воспользоваться вторыми уравнениями систем (23), (24). Введем прогиб *w* следующим образом:

$$w = R\eta^q v_{3,0}^{0(k)}.$$
(33)

Тогда разрешающее уравнение запишется в виде

$$\frac{T_1}{R_1} + \frac{T_2}{R_2} - \frac{1}{A_1} \frac{\partial N_1}{\partial \alpha_1} - \frac{1}{A_2} \frac{\partial N_2}{\partial \alpha_2} - k_2 N_1 - k_1 N_2 + 2\rho h \frac{\partial^2 w}{\partial t^2} = 0.$$
(34)

Получим выражения для усилий и моментов, входящих в уравнения (31), (32), (34). Чтобы получить выражение для T_i , необходимо использовать представления для функций $\sigma_{ii}^{0(k)}$, $\sigma_{ii}^{1(k)}$ из (23), (24) и выражения (22). Интегрируя по α_3 и суммируя, получим в силу (29)

$$T_{i} = B_{1} \left[\frac{1}{A_{i}} \frac{\partial u_{i}}{\partial \alpha_{i}} + k_{i} u_{j} + \frac{w}{R_{i}} \right] + B_{2} \left[\frac{1}{A_{j}} \frac{\partial u_{j}}{\partial \alpha_{j}} + k_{j} u_{i} + \frac{w}{R_{j}} \right] - C_{1} \left[\frac{1}{A_{i}} \frac{\partial}{\partial \alpha_{i}} \left(\frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right) + k_{i} \frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right] - C_{2} \left[\frac{1}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right) + k_{j} \frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right].$$
(35)

Аналогичным образом получим

$$G_{i} = C_{1} \left[\frac{1}{A_{i}} \frac{\partial u_{i}}{\partial \alpha_{i}} + k_{i} u_{j} + \frac{w}{R_{i}} \right] + C_{2} \left[\frac{1}{A_{j}} \frac{\partial u_{j}}{\partial \alpha_{j}} + k_{j} u_{i} + \frac{w}{R_{j}} \right] - D_{1} \left[\frac{1}{A_{i}} \frac{\partial}{\partial \alpha_{i}} \left(\frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right) + k_{i} \frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right] - D_{2} \left[\frac{1}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right) + k_{j} \frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right],$$
(36)

$$S_{ij} = B_{3} \left[\frac{A_{i}}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{u_{i}}{A_{i}} \right) + \frac{A_{j}}{A_{i}} \frac{\partial}{\partial \alpha_{i}} \left(\frac{u_{j}}{A_{j}} \right) \right] - 2C_{3} \left[\frac{1}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right) - k_{j} \frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right],$$

$$H_{ij} = C_{3} \left[\frac{A_{i}}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{u_{i}}{A_{i}} \right) + \frac{A_{j}}{A_{i}} \frac{\partial}{\partial \alpha_{i}} \left(\frac{u_{j}}{A_{j}} \right) \right] - 2D_{3} \left[\frac{1}{A_{j}} \frac{\partial}{\partial \alpha_{j}} \left(\frac{1}{A_{i}} \frac{\partial w}{\partial \alpha_{i}} \right) - k_{j} \frac{1}{A_{j}} \frac{\partial w}{\partial \alpha_{j}} \right],$$

где

$$C_{1} = 2\sum_{k=1}^{n} \frac{h_{k}E_{k}}{1-\nu_{k}^{2}}P_{k}, \qquad C_{2} = 2\sum_{k=1}^{n} \frac{h_{k}\nu_{k}E_{k}}{1-\nu_{k}^{2}}P_{k}, \qquad D_{1} = 2\sum_{k=1}^{n} \frac{h_{k}E_{k}}{3(1-\nu_{k}^{2})}Q_{k},$$
$$D_{2} = 2\sum_{k=1}^{n} \frac{h_{k}\nu_{k}E_{k}}{3(1-\nu_{k}^{2})}Q_{k}, \qquad C_{3} = \sum_{k=1}^{n} \frac{h_{k}E_{k}}{1+\nu_{k}}P_{k}, \qquad D_{3} = \sum_{k=1}^{n} \frac{h_{k}E_{k}}{3(1+\nu_{k})}Q_{k},$$
$$P_{k} = \left(\sum_{i=k}^{n} h_{i} - \sum_{i=1}^{k} h_{i}\right), \qquad \tilde{P}_{k} = \left(\sum_{i=k+1}^{n} h_{i} - \sum_{i=1}^{k} h_{i}\right), \qquad Q_{k} = \left(4h_{k}^{2} + 6h_{k}\tilde{P}_{k} + 3\tilde{P}_{k}^{2}\right).$$

Полученные в данной работе приближенные системы уравнений могут быть использованы при исследовании длинноволновых колебаний и процессов распространения нестационарных волн в многослойных оболочках. В последнем случае они применимы вдали от фронтов волн.

Работа выполнена при финансовой поддержке РФФИ (проект № 11-01-00545-а).

Библиографический список

1. *Kaplunov J. D., Kossovich L. Yu., Nolde E. V.* Dynamics of thin walled elastic bodies. San Diego : Academic Press, 1998. 226 p.

2. *Коссович Л. Ю*. Нестационарные задачи теории упругих тонких оболочек. Саратов : Изд-во Сарат. ун-та, 1986. 176 с.

3. Коссович Л. Ю., Каплунов Ю. Д. Асимптотический анализ нестационарных упругих волн в тонких оболочках вращения при ударных торцевых воздействиях // Изв. Сарат. ун-та. 2001. Т. 1, вып. 2. С. 111–131. 4. Каплунов Ю. Д., Кириллова И. В., Коссович Л. Ю.

УДК 539.3

ОДНОМЕРНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ В ГИБКИХ ТРУБКАХ

Ю. П. Гуляев

Саратовский государственный университет E-mail: gulvis@yandex.ru

В статье описан новый вариант осреднения уравнений Навье-Стокса для осесимметричного течения вязкой несжимаемой жидкости при минимальном числе упрощающих гипотез. Приведена полная система пространственно одномерных дифференциальных уравнений, описывающая динамику кровотока в системе крупных артериальных сосудов.

Ключевые слова: линеаризация, одномерные уравнения, осесимметричные колебания, закон Пуазейля. Асимптотическое интегрирование динамических уравнений теории упругости для случая тонких оболочек // ПММ. 1993. Т. 57, вып. 1. С. 83–91.

5. Коссович Л. Ю., Шевцова Ю. В. Асимптотические приближения трехмерных динамических уравнений теории упругости в случае двухслойных пластин // Проблемы прочности и пластичности : межвуз. сб. Н. Новгород : Изд-во Нижегород. ун-та, 2005. Вып. 76. С. 102–111.

6. *Амбарцумян С. А.* Общая теория анизотропных оболочек. М. : Наука, 1971. 446 с.

One-Dimensional Equations of Motion of a Viscous Incompressible Fluid in Flexible Tubes

Yu. P. Gulyaev

This paper describes a new variant of the averaging of the Navier– Stokes equations for axisymmetric flow of a viscous incompressible fluid with a minimum number of simplifying hypotheses. The complete system is spatially one-dimensional differential equations describing the dynamics of blood flow in the large arteries.

Key words: linearized, one-dimensional equation, axisymmetric oscillations, Poiseuille law.

Одномерные уравнения движения вязкой несжимаемой жидкости [1] применяются для моделирования динамики кровотока в крупных артериях. Эти уравнения положены в основу создания быстродействующих многопараметрических моделей артериальных систем, которые достаточно быстро и точно могут численно описывать динамику кровотока в соответствующей части артериальной системы применительно к конкретному индивидууму. Используемый в настоящее время вариант уравнений, полученный с помощью осреднения уравнений Навье–Стокса для осесимметричного течения вязкой несжимаемой жидкости и некоторых упрощающих предположениях [2], на наш взгляд, не полностью отражает характер течения жидкости в случае осевой симметрии потока и когда осевая скорость существенно больше радиальной скорости течения.

В данной работе предлагается новый, более строгий математический подход к выводу одномерных уравнений осесимметричных движений вязкой жидкости. При этом существенно сокращается число дополнительных гипотез. В частности, непосредственно закон Пуазейля, справедливый только для установившихся течений в тонких жестких трубках, здесь не используется.

Предположим, что происходит осесимметричное нестационарное течение вязкой несжимаемой жидкости в предварительно натянутой гибкой цилиндрической трубке. В цилиндрической системе