

УДК 517.518.126

ДОСТАТОЧНОЕ УСЛОВИЕ ЗАМЕНЫ ПЕРЕМЕННОЙ В ОБОБЩЕННОМ *Q*-ИНТЕГРАЛЕ

М. П. Ефимова

Московский государственный университет им. М. В. Ломоносова E-mail: efimova.margarita@gmail.com

В работе получено достаточное условие замены переменной в обобщенном Q-интеграле в одномерном случае.

Ключевые слова: обобщенный Q-интеграл, замена перемен-

Sufficient Condition for a Change of Variable in Generalized Q-integration

M. P. Efimova

A sufficient condition for a change of variable in generalized Q-integration in one-dimensional case is proved.

Key words: generalized *Q*-integral, change of variable.

ВВЕДЕНИЕ

В 1929 году в работе [1] Е. С. Titchmarsh был определен Q-интеграл от функции.

Определение 1. Измеримая действительнозначная функция f Q-интегрируема на отрезке [a,b], если, полагая

$$[f(x)]_{n;0} = egin{cases} f(x), & ext{при } |f(x)| \leq n \ 0, & ext{иначе}, \end{cases}$$

имеем, что $\lim_{n\to\infty}\int_a^b [f(x)]_{n;0}\,dx$ существует; этот предел назовем Q-интегралом от функции f и обозначим $(Q)\int_a^b f(x)\,dx$.

Введенный интеграл не обладает свойством аддитивности по функциям. В той же работе было рассмотрено следующее сужение *Q*-интеграла:

Определение 2. Измеримая действительнозначная функция f A-интегрируема на отрезке [a,b], если она Q-интегрируема и выполнено условие: $\mu\{x\in[a,b]\mid|f(x)|>n\}=o(1/n)$ при $n\to\infty$, где μ — стандартная мера Лебега на $\mathbb R$. Тогда $(A)\int_a^b f(x)\,dx=(Q)\int_a^b f(x)\,dx$.

Полученный A-интеграл аддитивен по функциям.

Его изучению посвящено множество работ (см. [2-5]). Основные результаты об A-интеграле содержатся в монографии [6].

Заметим, что исходный Q-интеграл Е. С. Titchmarsh почти не исследовался в силу его неаддитивности. С другой стороны, свойства Q-интеграла также представляют некоторый интерес. Поэтому Т. П. Лукашенко предложил автору рассматривать другую, более естественную срезку. Полученный интеграл оказался обобщением исходного Q-интеграла и обладал рядом интересных свойств.

Определение 3. Измеримая действительнозначная функция f Q-интегрируема s обобщенном смысле на отрезке [a,b], если, полагая

$$[f(x)]_n = egin{cases} f(x), & ext{при } |f(x)| \leq n \ n \, ext{sgn} f(x), & ext{иначе}, \end{cases}$$

имеем, что $\lim_{n\to\infty}\int_a^b [f(x)]_n\,dx$ существует; этот предел назовем обобщенным Q-интегралом от функции f и обозначим $(Q_{06})\int_a^b f(x)\,dx$.

В работе [7] были получены некоторое условие аддитивности Q_{06} -интеграла и следующий аналог критерия Лебега (см. [8, теорема 17.4]):

Теорема 1 [7]. Пусть (Ω, Σ, μ) — пространство с мерой, E измеримо, $\mu(E) < \infty$, u f(x) измерима на E. Тогда $f(x) \in Q_{o6}(E)$, если и только если сходится ряд

$$\sum_{n=0}^{\infty} \left[\mu(F_n^+(f)) - \mu(F_n^-(f)) \right],$$

где
$$F_n^+(f) = \{x \in E \mid f(x) \ge n\}, \ F_n^-(f) = \{x \in E \mid f(x) \le -n\}.$$

© Ефимова М. П., 2013 43

С этого момента через μ будем обозначать стандартную меру Лебега на \mathbb{R} . Будем называть $E \subseteq [\alpha, \beta]$ множеством полной меры, если $\mu([\alpha, \beta] \setminus E) = 0$.

Вопрос о замене переменной в A-интеграле исследовался в работе [9]. Полученный результат формулируется следующим образом:

Теорема 2 [9]. Если $\phi(t)$ абсолютно непрерывна, строго возрастает и отображает отрезок $[\alpha,\beta]$ на отрезок [a,b], и некоторое множество $E\subseteq [\alpha,\beta]$ полной меры можно представить в виде $E=E_1\cup E_2$ таким образом, чтобы для всех $t\in E_1$ выполнялось $0< m\le \phi'(t)\le M<\infty$, а для всех $t\in E_2$ выполнялось $\phi'(t)=0$, то для любой функции f(x), А-интегрируемой на отрезке [a,b], функция $f(\phi(t))\phi'(t)$ также А-интегрируема и выполняется равенство

$$(A) \int_a^b f(x) dx = (A) \int_a^\beta f(\phi(t))\phi'(t) dt.$$

В настоящей работе получен аналогичный результат для Q_{06} -интеграла и доказана достаточность: **Теорема 3.** Пусть $\phi \colon [\alpha,\beta] \to [a,b] - aбсолютно непрерывная и строго монотонная функция, <math>\phi([\alpha,\beta]) = [a,b]$. Тогда для того чтобы функция $f(\phi(t))|\phi'(t)|$ была Q_{06} -интегрируема на $[\alpha,\beta]$ и выполнялось равенство

$$(Q_{o6}) \int_{a}^{b} f(x) dx = (Q_{o6}) \int_{\alpha}^{\beta} f(\phi(t)) |\phi'(t)| dt$$
 (1)

для любой функции $f(x) \in Q_{ob}([a,b])$, достаточно, чтобы некоторое множество $E \subseteq [\alpha,\beta]$ полной меры можно было представить в виде $E = E_1 \cup E_2$, $\phi'(t) = m$ при $t \in E_1$, $\phi'(t) = 0$ при $t \in E_2$, где $m \in \mathbb{R} \setminus \{0\}$ — константа.

Кроме того, в работе доказано, что для $Q_{\text{об}}$ -интеграла определения через дискретную и непрерывную срезки эквивалентны (лемма 1). Приведен пример нелинейной функции $\phi(t)$, удовлетворяющей условию теоремы 3, а также пример, показывающий существенность условий, налагаемых на функцию $\phi(t)$.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Обозначим $F_n(f) = \{x \in [a, b] \mid |f(x)| \ge n\}.$

Лемма 1. Пусть $[a,b]\subseteq\mathbb{R}$, f(x) измерима на [a,b]. Тогда $f(x)\in Q_{ob}([a,b])$, если и только если существует $\lim_{s\to +\infty}\int_a^b [f(x)]_s\,dx$, где $s\in\mathbb{R}_+$.

Доказательство. Пусть существует $\lim_{s \to +\infty} \int_a^b [f(x)]_s \, dx$. Тогда существует и $\lim_{n \to +\infty} \int_a^b [f(x)]_n \, dx$, $n \in \mathbb{N}$, т. е. $f(x) \in Q_{06}([a,b])$.

Обратно, пусть $f(x) \in Q_{06}([a,b])$. Обозначим через [s] целую часть s и рассмотрим выражение $h_s(x) = [f(x)]_s - [f(x)]_{[s]}$. Нетрудно видеть, что $h_s(x) = 0$ при $x \notin F_{[s]}(f)$, $|h_s(x)| \le s - [s] \le 1$ при $x \in F_{[s]}(f)$. Через $\chi_n(x)$ обозначим характеристическую функцию множества $F_n(f)$, $n \ge 0$. Тогда $|h_s(x)| \le \chi_{[s]}(x)$. Следовательно,

$$\left| \int_{a}^{b} h_{s}(x) \, dx \right| \leq \int_{a}^{b} |h_{s}(x)| \, dx \leq \int_{a}^{b} \chi_{[s]}(x) \, dx = \mu(F_{[s]}(f)).$$

Ho $\lim_{s\to +\infty}\mu(F_{[s]}(f))=\lim_{n\to +\infty}\mu(F_n(f))=0$, откуда $\lim_{s\to +\infty}\int_a^bh_s(x)\,dx=0$. Тем самым,

$$\lim_{s \to +\infty} \left(\int_a^b [f(x)]_s \, dx - \int_a^b [f(x)]_{[s]} \, dx \right) = \lim_{s \to +\infty} \int_a^b h_s(x) \, dx = 0.$$

Так как

$$\lim_{s \to +\infty} \int_a^b [f(x)]_{[s]} dx = \lim_{n \to +\infty} \int_a^b [f(x)]_n dx = (Q_{06}) \int_a^b f(x) dx,$$

то существует $\lim_{s\to +\infty} \int_a^b [f(x)]_s dx = (Q_{\text{of}}) \int_a^b f(x) dx.$

Доказательство основного результата. Имеем:

$$(Q_{06})\int_a^b f(x)\,dx = [s\in\mathbb{R},$$
 по лемме $1] = \lim_{s\to +\infty}\int_a^b [f(x)]_s\,dx =$

44 Научный отдел

П

$$= [\text{замена переменной в интеграле Лебега}] = \lim_{s \to +\infty} \int_{\alpha}^{\beta} [f(\phi(t))]_s |\phi'(t)| dt =$$

$$= \lim_{s \to +\infty} \left(\int_{E_1} [f(\phi(t))]_s \cdot |m| dt + \int_{E_2} [f(\phi(t))]_s \cdot 0 dt \right) =$$

$$= \lim_{s \to +\infty} \int_{E_1} [f(\phi(t))|m|]_{s|m|} dt = \lim_{s \to +\infty} \int_{E_1} [f(\phi(t))|m|]_s dt = \lim_{s \to +\infty} \int_{\alpha}^{\beta} [f(\phi(t))|\phi'(t)|]_s dt.$$

Откуда $f(\phi(t))|\phi'(t)| \in Q_{\text{of}}([\alpha, \beta])$ и выполнено (1).

Пример 1. Построим пример нелинейной функции $\phi(t)$ на [0,1], абсолютно непрерывной, строго возрастающей и удовлетворяющей условию существования множеств E_1 и E_2 , $E=E_1\cup E_2\subseteq [0,1]$, $\mu([0,1]\setminus E)=0,\ \phi'(t)=1$ при $t\in E_1,\ \phi'(t)=0$ при $t\in E_2.$

Занумеруем все рациональные числа, r_n-n -е рациональное число. Положим $E_0=\bigcup_{n=0}^{\infty} \left(r_n-\frac{1}{2^{n+2}}, r_n-\frac{1}{2^{n+2}}, r_n-\frac{1}{2^{n+$

 $(x_n+rac{1}{2^{n+2}})$. Тогда $\mu(E_0\cap [a,b])>0$ для любого отрезка $[a,b]\subseteq \mathbb{R}$ ненулевой длины, и $\mu(E_0)\leq 1/2$.

Обозначим $E_1=E_0\cap[0,1]$. Тогда $\mu(E_1)>0$, $\mu([0,1]\setminus E_1)=1-\mu(E_1)\geq 1/2>0$. Пусть $\psi(s)=\chi_{E_1}(s)$ — характеристическая функция множества E_1 , $\phi(t)=\int_0^t \psi(s)\,ds$. Отсюда, $\phi(t)$ абсолютно непрерывна. Тогда для любых $t_1< t_2$ имеем $\phi(t_2)-\phi(t_1)=\int_{t_1}^{t_2}\psi(s)\,ds=\mu([t_1,t_2]\cap E_1)>0$. Значит, функция $\phi(t)$ строго возрастает.

Так как $\psi(s)$ суммируема, то $\frac{d}{dt}\int_0^t\psi(s)\,ds=\psi(t)$ почти всюду на [0,1] (см. [10, гл. VI, \S 3, теорема 1]). Тем самым, $\phi'(t) = \psi(t)$, $\phi'(t) = 1$ почти всюду на E_1 , $\phi'(t) = 0$ почти всюду на $[0,1] \setminus E_1$. Рассмотрим множества $\widetilde{E}_1 = \{t \in [0,1] \mid \phi'(t) = 1\}$, $\widetilde{E}_2 = \{t \in [0,1] \mid \phi'(t) = 0\}$. Тогда $\mu([0,1]\setminus (\widetilde{E}_1\cup \widetilde{E}_2))=0$. Нелинейность функции ϕ очевидна.

Пример 2. Рассмотрим функции

$$g(x) = \begin{cases} \frac{n}{2}, & x \in \left(\frac{1}{\sqrt{n+1}}, \frac{1}{\sqrt{n}}\right], \\ 0, & x \in (-\infty, 0] \cup (1, +\infty), \end{cases} h(x) = g(x) - g(-x).$$

Пусть, кроме того, $\phi \colon [-1, 1/2] \to [-1, 1]$ задана следующим образом:

$$\phi(t) = \begin{cases} t, & t \le 0, \\ 2t, & t > 0. \end{cases}$$

Тогда $h(x)\in Q_{\mathrm{o6}}([-1,1])$, но $h(\phi(t))|\phi'(t)|\notin Q_{\mathrm{o6}}\left([-1,1/2]\right)$. Имеем $(Q_{\mathrm{o6}})\int_{-1}^{1}h(x)\,dx=0$. Отметим, что $\mu(\{x\in\mathbb{R}\mid g(x)\geq n/2\})=1/\sqrt{n}$. Рассмотрим $F_n^\pm=F_n^\pm\left[h(\phi(t))\phi'(t)\right]$:

$$\mu(F_n^+) = \mu(F_n^+(h(2t) \cdot 2)) = \mu(\{t \in [-1, 1] \mid 2h(2t) \ge n\}) = \frac{1}{2}\mu\left(\{t \in \mathbb{R} \mid h(t) \ge n/2\}\right) = \frac{1}{2\sqrt{n}},$$

$$\mu(F_n^-) = \mu(F_n^-(h(t))) = \mu\left(\{t \in [-1, 1] \mid h(t) \le -2n/2\}\right) = \frac{1}{\sqrt{2n}},$$

$$\mu(F_n^+) - \mu(F_n^-) = \frac{1}{\sqrt{n}} \left(\frac{1}{2} - \frac{1}{\sqrt{2}} \right), \text{ и } h(\phi(t)) |\phi'(t)| \notin Q_{\text{of}}\left([-1, 1/2]\right) \text{ по теореме } 2.$$

Автор благодарит своего научного руководителя профессора Т. П. Лукашенко за постановку задачи и ценные замечания.

Работа выполнена при финансовой поддержке РФФИ (проект 11-01-00321).

Библиографический список

- London Math Soc. 1929. Vol. 29. P. 49-80.
- 2. Ульянов П. Л. Некоторые вопросы А-интегрирования Sov. Phys. Dokl. 1955. Vol. 102, № 6. P. 1077—1080.]
- 1. Titchmarsh E. C. On conjugate functions // Proc. // Докл. АН СССР. 1955. Т. 102, № 6. С. 1077-1080. [Ul'yanov P. L. Certain Questions of A-Integration //

45 Математика

- 3. Ульянов П. Л. А-интеграл и его применение к теории тригонометрических рядов // УМН. 1955. Т. 10, № 1. С. 189–191 [*Ul'yanov P. L.* The *A*-Integral and its Application in the Theory of Trigonometric Series // UMN. 1955. Vol. 10, № 1. P. 189–191.]
- 4. Ульянов П. Л. А-интеграл и сопряженные функции // Учен. зап. Моск. гос. ун-та. 1956. Т. VIII, вып. 181. С. 139–157. [*Ul'yanov P. L.* The A-Integral and Conjugate Functions // Uchen. Zap. Mosk. Gos. Univ. 1956. Vol. VIII, iss. 181. P. 139–157.]
- 5. *Лукашенко Т. П.* Об *A*-интегрируемости функций // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1982. № 6. С. 59–63. [*Lukashenko T. P.* On the *A*-Integrability of Functions // Vestn. Mosk. Gos. Univ. Ser. 1. Matem. Mekh. 1982. № 6. P. 59–63.]
- 6. *Бари Н. К.* Тригонометрические ряды. М. : Физматгиз, 1961. 936 с. [*Bari N. K.* Trigonometric Series. Moscow : Fizmatgiz, 1961. 936 р.]

- 7. *Ефимова М. П.* О свойствах *Q*-интеграла // Мат. заметки. 2011. Т. 90, № 3. С. 340–350. [*Efimova M. P.* On the Properties of the *Q*-Integral // Math. Notes. 2011. Vol. 90, № 3. P. 322—332.]
- 8. Дьяченко М. И., Ульянов П. Л. Мера и интеграл. М.: Факториал, 1998. 160 с. [*D'yachenko M. I., Ul'yanov P. L.* Measure and the Integral. Moscow: Faktorial, 1998. 160 р.]
- 9. *Бонди И. Л.* Замена переменной в *А*-интеграле // Уч. зап. Моск. гос. пед. ин-та им. В. И. Ленина. 1962. № 188. С. 3–21. [*Bondi I. L.* The Change of Variable in the *A*-Integral // Uchen. Zap. Mosk. Gos. Ped. Inst. 1962. № 188. Р. 3–21.]
- 10. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. 4-е изд. М.: Наука, 1976. 543 с. [Kolmogorov A. N., Fomin S. V. Elements of the Theory of Functions and Functional Analysis. Mineola; New York: Dover Publications, 1999.]

УДК 517.95 517.984

О РЕШЕНИЯХ НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЩЕГО УРАВНЕНИЯ КДФ

М. Ю. Игнатьев

Саратовский государственный университет E-mail: IgnatievMU@info.sgu.ru

В работе рассматривается общее уравнение иерархии Кортевега-де Фриза (КдФ). Изучаются краевые задачи для данного уравнения с неоднородными граничными условиями специального вида. Построен широкий класс решений изучаемых задач. Построение основано на идеях метода обратной спектральной задачи.

Ключевые слова: иерархия КдФ, краевые задачи, интегрируемость, метод обратной задачи.

On Solutions of Some Boundary Value Problems for General KdV Equation

M. Yu. Ignatyev

This paper deals with the general equation of Korteweg-de Vries (KdV) hierarchy. A boundary-value problem with certain inhomogeneous boundary conditions is studied. We construct the wide class of solutions of the problem using the inverse spectral method

Key words: KdV hierarchy, boundary–value problems, integrability, inverse spectral method.

ВВЕДЕНИЕ

Известно, что исследование краевых и смешанных задач для интегрируемых нелинейных уравнений сталкивается со значительными трудностями принципиального характера. Несмотря на значительный прогресс, достигнутый в этой области в последние годы [1–4], в общем случае здесь не удается применить метода обратной спектральной задачи с той же эффективностью, как в случае задачи Коши на всей оси: процедура построения решения включает шаг, состоящий в решении нетривиальной существенно нелинейной задачи. Исключение составляют задачи с граничными условиями специального вида [5–7], которые часто называют интегрируемыми, или линеаризуемыми. В этом случае удается, используя идеи метода обратной задачи, построить широкие классы решений краевых задач [7,8], в ряде случаев дать (полное или частичное) решение смешанных задач [1–3,9], исследовать поведение решений на больших временах[4]. Отметим, что исследование краевых и смешанных задач существенным образом опирается на структуру матриц, входящих в представление нулевой кривизны для данного уравнения. Поэтому все полученные на данный момент результаты относятся к тому или иному конкретному интегрируемому уравнению и не могут быть непосредственно обобщены на какие-либо классы уравнений.

В настоящей работе подход, основанный на идеях метода обратной спектральной задачи, применяется к исследованию некоторых краевых задач для класса уравнений, являющегося подмножеством иерархии КдФ. Построен класс точных решений, включающий в себя, в частности, солитонные и конечнозонные решения.