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XopoLwo 13BeCTHO, 4TO 0606LIEHIe A3eTa (oyHKLMM MypBILA — Neproaunyeckast fseTa (PYHKUMsS [ypBiuLia — C TPaHCLEHAEHTHbIM
napameTpoM YHUBEpCasbHa B TOM CMbIC/e, HTO €€ cBMramMmi MpubnKaeTcst Besikasi aHanuTiYeckas (oyHKUs.. B cTatbe ycnosue
TPaHCLIEHEHTHOCTI NapameTpa 3aMeHsieTcst 6oniee cnabbiM YCNOBIMEM O NIMHENHOIN HE3aBICMOCTI HEKOTOPOTO MHOXKECTEA.

KnroqeBbie cnosa: nepuoanyeckas aseta yHKUns prBVIua, NPOCTPAHCTBO aHaNUTU4HEeCKnX prHKLl,VIVI, cnabasi cxoaMMOCTb,
YHUBEpPCanbHOCTb.

1. INTRODUCTION

Let s = o+it be a complex variable, and a, 0 < o < 1, be a fixed parameter. The Hurwitz zeta-function

¢(s, ) is defined, for o > 1, by the Dirichlet series

= 1
((s,a) = Z: m,

m=0

and continues analytically to the whole complex plane, except for a simple pole at s = 1 with residue 1.
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A natural generalization of the function ((s,a) is the periodic Hurwitz zeta-function. Let
a = {an, : m € Ny = NU {0}} be a periodic sequence of complex numbers with minimal period
k € N. The periodic Hurwitz zeta-function (s, a;a) is defined, in the hali-plane o > 1, by the Dirichlet
series

k—1
C(svav a) = E ZalC (Sa H];a)
1=0
Thus, the properties of the Hurwitz zeta-function imply the analytic continuation for ((s,a;a) to the
k—1
whole complex plane, except for a simple pole at s = 1 with residue a déf% > a;. If @ = 0, then the
1=0

function (s, «;a) is entire.

Properties of the functions (s, a) and ((s,a;a) depend on the parameter . It is known [6] that the
function (s, a; a) with transcendental parameter « is universal in the sense that the shifts ((s+i7, a;a),
7 € R, uniformly on compact subsets of the strip D = {s € C: 3 < o < 1}, approximate every analytic
function. For a precise statement of the universality for {(s, a;a), we need some notation. Denote by %
the class of compact subsets of D with connected complements. For K € JZ, let H(K) denote the class
of continuous functions on K which are analytic in the interior of K. Moreover, let measA stand for the
Lebesgue measure of a measurable set A C R. Then the main result of [1] is the following theorem.

Theorem 1. Suppose that « is a transcendental number, K € % and f(s) € H(K). Then, for every
e>0,

lim inf lmeas {T €[0,T]: sup [C(s +ir,a;a) — f(s)] < 6} > 0.
T—oo T seK

The aim of the present paper is to replace a hypothesis of Theorem 1 on the transcendence of the
parameter o by a wider one. Define the set L(a) = {log(m + «) : m € Ny}.

Theorem 2. Suppose that the set L(«) is linearly independent over Q, and that K € % and
f(s) € H(K). Then the same assertion as in Theorem I is valid.

Note that if « is a transcendental number, then the set L(«) is linearly independent over Q. On
the other hand, it is known [2] that if « is an algebraic irrational number, then at least 51 percent of
elements of the set L(«) are linearly independent over Q. Thus, it is possible that the set L(«) is linearly
independent over Q even « is an algebraic irrational number. Unfortunately, we do not know any such a.

For the proof of Theorem 2, a probabilistic method based on limit theorems on the weak convergence
of probability measures in the space of analytic functions will be applied.

2. LIMIT THEOREMS

Denote by H(D) the space ol analytic functions on D equipped with the topology of uniform
convergence on compacta. Let Z(X) stand for the Borel field of the space X. In this section, we
consider the weak convergence of the probability measure

Pr(A) def %meas {T€[0,T]: {(s+it,a;a) € A}, Ae B(H(D)),

as T'— oo.
Let « be the unit circle on the complex plane, i. e, v = {s € C: |s] = 1}. We start with a limit

theorem on the torus © = [] ~m, where 7, = v for all m € Ny. Since Q@ with the product topology

m=0
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and pointwise multiplication is a compact topological Abelian group, on (2, 2(2)) the probability Haar
measure my can be defined, and we have a probability space (2, Z(2), mp). Let, for A € #(2),

Qr(A) 2] %meas {re[0,T]: (m+a)"": meNy) € A}.

Lemma 1. Suppose that the set L(«) is linearly independent over Q. Then Qr converges weakly to
the Haar measure my as T — oo.

Proof. Denote by w the elements of Q. For m € Ny, let w(m) be the projection of w € Q to the
coordinate space 7,,. Then it is well known, see, for example, [3], that the Fourier transform gr(k),
k = (k1,ka,...), of the measure Qr is of the form

T oo
gr(k) = %/exp {—iT Z ko log(m + a)} dr, (1)
0

m=0

where only a finite number of integers k,, are distinct from zero. Now we essentially apply the linear

independence of the set L(«). Since > ky,log(m + «) = 0 if and only if all k,, =0, we deduce from (1)

m=0
that
1 if k=0,
lim gr(k) = l -~
T—o0 0 if E#0.
This and Theorem 1.4.2 of [4] show that the measure Qr converges weakly to my as T — oc. O

Now we will prove a limit theorem for absolutely convergent Dirichlet series. For a fixed o1 > 1/2,
and m € Ny, n € N, let v,(m, a) = exp {— (T"’Jra) 1}. Define

n+ao

oo
amvnma
(s,050) = 3 e
m+a
m=0

Then it is known [3] that the latter series is absolutely convergent for o > 1/2. For A € #(H (D)), define
Pr,(A) = +meas {7 € [0,T] : (,(s+iT,o;a) € A}. For w € €, define one more function

Z amw(m)vy, (m, @)

(m +a)°

Culs, o, wsa) =

)

m=0

clearly, the series being absolutely convergent for o > 1. Let wy € Q be a fixed element. On

(H(D),#(H(D)),mp), define one more probability measure

. 1
Pr,(A) = Tmeas {r €[0,T]: Cu(s+it,a,wp;a) € A}.

Lemma 2. Suppose that the set L(«) is linearly independent over Q. Then the both measures Pr,,
and Pr,, converges weakly to the same probability measure P, on (H(D), #(H(D))) as T — co.

Proof. A proof uses Lemma 1, Theorem 5.1 of [5] and the invariance of my, and is independent on
the arithmetic nature of the parameter . Therefore, it remains the same as in the case of transcendental
a [1]. O

The next step in the investigation of the weak convergence of the measure Pp consists of the
approximation of the function {(s,a;a) by (,(s,@;a) in the mean. The space H(D) is metrisable. Denote
by p a metric in H(D) which induces the topology of uniform convergence on compacta.

Lemma 3. We have

N0 Toeo

T
1
lim limsup T /p(C(S +ir,a50), G (s + i1, a5a))dT = 0.
0

Matematrka 69



%@& Mss. Capar. yH-Ta. Hos. cep. Cep. Matematrka. Mexarnka. NHpopmatrka. 20135, T.13, Bbin. 4, 4.2

Proof. A proof of the lemma in the case of transcendental « in [1] does not use the transcendence

property. Therefore, it also remains the same in our case. |
Let, for w € Q,
2 apmw(m)
s, ,w;a) = —_.
¢( ) mZ:jo 1 o)

Then ((s,a,w;a) is the H(D)-valued random element defined on the probability space (£2, Z(),mp)
[6].

The approximation of the function ((s,a,w;a) by (,(s,a,w;a) is more complicated, we need some
elements of ergodic theory. For 7 € R, define a, = {((m + )~ : m € Ng)}. Let {¢, : 7 € R}, where
or(w) = a;w, w € Q. Then {p, : 7 € R} is a group of measurable measure preserving transformations
of the torus . We will prove the ergodicity of the group {¢, : 7 € R}. We recall that the set A € Z(Q)
is invariant with respect to the group {¢, : 7 € R} if, for any 7 € R, the sets A and A, = ¢, (A) differ
one from another by a set of my-measure zero. The group {¢, : 7 € R} is invariant if the o-field of all
invariant sets consists of the sets having my-measure O or 1.

Lemma 4. Suppose that the set L(«) is linearly independent over Q. Then the group {p, : 7 € R}
is ergodic.

Proof. It is well known that the characters y of the group Q are of the form y(w) = [] wk=(m),
m=0
where only a finite number of integers k,, are distinct from zero. First let x be a non-trivial character,

i. e, x(w) # 1. Then we have that

x(a;) = H (m 4 ) = exp {—iT Z ko log(m + a)} . (2)

m=0 m=0

Since the set L(«) is linearly independent over Q, > k,,log(m + «) # 0 for every finite number of
0

non-zero integers k,,. Therefore, (2) implies that there exists 7 € R\ {0} such that

x(ar,) # 1. (3)

Let A € #(Q) be an invariant set with respect to the group {¢, : 7 € R}, and I, be the indicator
function. Then we have that, for every 7 € R and for almost all w € €,

Ii(arw) = T4(w). (4)

Denote by g(x) the Fourier transform of the function g, i. e., §(x) = [ x(w)g(w)mp(dw). Taking into
Q
account (4), we find that

L4(x) = x(ar)la(x)-

This together with (3) shows that fA(X) = 0 for every non-trivial character .

Now let xo be the trivial character of the torus €, i. e., xo(w) = 1, and let, for brevity, fA(XO) =b.
Using the orthogonality property of characters and the equality fA(X) = 0, we find that, for every
character x of the torus €,

i(x) = / x(@)mr(dw) = bia(x) = b(x).
Q

From this the lemma easily follows. |
Lemma 5. Suppose that the set L(«) is linearly independent over Q. Then, for almost all w € Q,

T
1
lim limsupf/p(((eriT,a,w;a)7Cn(s+iT,a,w; a))dr = 0.
0

n—o0 T—oo
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Proof. In [6], the assertion of the lemma is proved in the case of transcendental «, however, the
transcendence is used only for the proof of the ergodicity of the group {p, : 7 € R}. Since, by Lemma 4,
the group {@, : 7 € R} is ergodic, the proof of the lemma runs in the same way as in [6]. O

Now we are able to obtain the weak convergence of the measure Pr. However, having in mind the
identification of the limit measure, we also consider the measure

Pr(A) = %meas {r€0,T]: {(s+ir,a,w;a) € A}, Ae B(H(D)).

Lemma 6. Suppose that the set L(«) is linearly independent over Q. Then the both measures Pr
and Pr converge weakly to the same probability measure P on (H(D),B(H(D))) as T — oc.

Proof. The used method is the same as in the case of transcendental a [1, 6], and uses Lemmas 2, 3
and 5. O

Now we state the main limit theorem of this section.

Theorem 3. Suppose that the set L(«) is linearly independent over Q. Then the measure Pr
converges weakly to the distribution P¢ of the random element ((s, o, w;a).

Proof. We apply Lemmas 4, 6 and the Birkhoff—Khinchine theorem. O

3. PROOF OF THE UNIVERSALITY THEOREM

For the proof of Theorem 2, together with Theorem 3 we need the explicit form of the support of the
measure Pc.

The support of P is independent of the arithmetic nature of the parameter «, therefore we may use
the following result of [1].

Theorem 4. The support of the measure P; is the whole of H(D).

Proof of Theorem 2. By the Mergelyan theorem [7], there exists a polynomial p(s) such that

sup [f(s) = p(s)] < 5. ()

seK

In view of Theorem 4, the polynomial p(s) is an element of the support of the measure P.. Thus,
for every open neighbourhood G of the polynomial p(s), the inequality P:(G) > 0 is true. Let
G={g€ HD): sup,cx |9(s) —p(s)| < e/2}. Using Theorem 3, an equivalent of the weak convergence
of probability measures in terms of open sets and the definition of G, we obtain that

0 seK

1
lim inf eas {7’ €[0,7] : sup |[C(s +iT,a;a) — p(s)] < 5/2} > 0. (6)
[t remains to replace in this inequality p(s) by f(s). We note that in view of (5), for such T,

sup |¢(s +iT,a5a) — f(s)] < e.
seK

Thus, we deduce from (6) that
Nt .
lim inf neas {7’ €[0,T): sup|¢(s+ir,a;a) — f(s)] < 6} > 0.
— 00 seK

The theorem is proved. U
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K OLLEHKE OZIHOIO KJTACCA CYMMATOPHbIX ®YHKLUIA
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[Insi KOHEYHO3HAYHBIX prHKLlI/II?I HaTypanbHOro aprymeHTa h(n), UMELWKX OrpaHn4YeHHyo CyMMaTopHYyto GOyHKLINIO, OLIEHNBAKOTCS

CyMMarTopHble coyHkuMmM B1uaa > h(n)n't, 1 < |t| < T.

n<x

KntoueBbie cnosa: 4ncnoBbe XapakTepbl, CyMMaTopHble OYHKLWW, CTENEHHbIE Psiabl.

B pa6ore [1] 6bl10 OKA3aHO, YTO [/l YKCJIOBBIX XapakTepoB Jlupuxie y mpu J06GOM AeHCTBUTENBHOM ¢

HMeeT MeCTO OIl€HKa BHuIa

> x(n)n

n<z

T =0(1).

B nanHoii pa6ore 3TOT pesysbraT 0000I1aeTcs Ha CAy4Yal KOHEUHO3HAUHBIX (PYHKUHH HATypasbHOTO

aprymenTa h(n), 0/ KOTOPBIX BBITIOJHSIOTCS YCIOBHUS:

1) S(x) = ; h(n) = O(1);

2) ¢yuxuns g(x), 3agaHHasi CTENEHHBIM psIoOM Buaa g(x) =

Touke r = 1.
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