References - 1. Coppersmith D., Winograd S. Matrix multiplication via arithmetic progressions. *J. Symbolic Comput.*, 1990. Vol. 9, no. 3, pp. 251–280. - 2. Vassilevska Williams V. Multiplying Matrices Faster than Coppersmith–Winograd. *Proceedings of the 44-th Symposium on Theory of Computing, STOC'12.* 2012. URL: www.cs.berkeley.edu/ virgi/matrixmult.pdf (Accessed 30, September, 2013). - 3. Cohn H., Umans C. A group theoretic approach to fast matrix multiplication. *Proceedings of the 44-th Annual IEEE Symposium on Foundations of Computer Science*. 2003, pp. 438–449. DOI: 10.1109/SFCS.2003.1238217. - 4. Cohn H., Kleinberg R., Szegedy B., Umans C. Group-theoretic algorithms for matrix multiplication. *Proceedings of the 46-th Annual IEEE Symposium on Foundations of Computer Science*. 2005, pp. 379–388. DOI: 10.1109/SFCS.2005.39. - 5. Platonov V. P., Kuznetsov Iu. V., Petrunin M. M. O teoretiko-gruppovom podkhode k probleme bystrogo umnozheniia matrits. Matematicheskoe i komp'iuternoe modelirovanie sistem: teoreticheskie i prikladnye aspekty [A group-theoretical approach to the problem of fast matrix multiplication. Mathematical and computer - modeling of systems: theoretical and applied aspects]. *Sbornik nauchnuh trudov NIISI RAN* [Collection of scientific papers NIISI RAS]. Moscow, 2009, pp. 4–15 (in Russian). - 6. Kuznetsov Yu. V. Nekotorye kombinatornye aspekty teoretiko-gruppovogo podkhoda k probleme bystrogo umnozheniia matrits [Some combinatorial aspects of the group-theoretic approach to fast matrix multiplication]. *Chebyshevskii sbornik.*, 2012, vol. 13, no. 1, pp. 102–109 (in Russian). - 7. Alon N., Shpilka A., Umans C. On sunflowers and matrix multiplication. *Electronic Colloquium on Computational Complexity*, 2011, Report no. 67, pp. 1–16. - 8. Davis B. L., Maclagan D. The card game SET. *Mathematical Intelligencer*, 2003, vol. 25, no. 3, pp. 33–40. - 9. Bateman M., Katz N. New bounds on caps sets. *J. American Math. Soc.*, 2012. vol. 25, no. 2, pp. 585–613. - 10. Edel Y. Extensions of generalized product caps. Designs, Codes and Cryptography, 2004, vol. 31, pp. 5–14. - 11. Mebane P. *Uniquely Solvable Puzzles and Fast Matrix Multiplication*. HMC Senior Theses, 2012, 37 p. УДК 511.3 # ОБ УНИВЕРСАЛЬНОСТИ НЕКОТОРЫХ ДЗЕТА-ФУНКЦИЙ А. Лауринчикас 1 , Р. Мацайтене 2 , Д. Мохов 3 , Д. Шяучюнас 4 Хорошо известно, что обобщение дзета функции Гурвица — периодическая дзета функция Гурвица — с трансцендентным параметром универсальна в том смысле, что её сдвигами приближается всякая аналитическая функция. В статье условие трансцендентности параметра заменяется более слабым условием о линейной независимости некоторого множества. *Ключевые слова:* периодическая дзета функция Гурвица, пространство аналитических функций, слабая сходимость, универсальность. ## 1. INTRODUCTION Let $s=\sigma+it$ be a complex variable, and α , $0<\alpha\leq 1$, be a fixed parameter. The Hurwitz zeta-function $\zeta(s,\alpha)$ is defined, for $\sigma>1$, by the Dirichlet series $$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$ and continues analytically to the whole complex plane, except for a simple pole at s=1 with residue 1. ¹ Академик АН Литвы, доктор физико-математических наук, профессор, заведующий кафедрой теории вероятностей и теории чисел, Вильнюсский университет (Литва), antanas.laurincikas@mif.vu.lt ²Доктор математических наук, профессор кафедры математики, Шяуляйский университет (Литва), renata.macaitiene@mi.su.lt ³Магистрант факультета математики и информатики, Вильнюсский университет (Литва), dmitrij.mochov@mif.vu.lt $^{^4}$ Доктор математических наук, профессор кафедры математики, Шяуляйский университет (Литва), siauciunas@fm.su.lt A natural generalization of the function $\zeta(s,\alpha)$ is the periodic Hurwitz zeta-function. Let $\mathfrak{a}=\{a_m:m\in\mathbb{N}_0=\mathbb{N}\cup\{0\}\}$ be a periodic sequence of complex numbers with minimal period $k\in\mathbb{N}$. The periodic Hurwitz zeta-function $\zeta(s,\alpha;\mathfrak{a})$ is defined, in the half-plane $\sigma>1$, by the Dirichlet series $$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$ The periodicity of the sequence \mathfrak{a} shows that, for $\sigma > 1$, $$\zeta(s, \alpha; \mathfrak{a}) = \frac{1}{k^s} \sum_{l=0}^{k-1} a_l \zeta\left(s, \frac{l+\alpha}{k}\right).$$ Thus, the properties of the Hurwitz zeta-function imply the analytic continuation for $\zeta(s,\alpha;\mathfrak{a})$ to the whole complex plane, except for a simple pole at s=1 with residue $a\stackrel{def}{=}\frac{1}{k}\sum_{l=0}^{k-1}a_l$. If a=0, then the function $\zeta(s,\alpha;\mathfrak{a})$ is entire. Properties of the functions $\zeta(s,\alpha)$ and $\zeta(s,\alpha;\mathfrak{a})$ depend on the parameter α . It is known [6] that the function $\zeta(s,\alpha;\mathfrak{a})$ with transcendental parameter α is universal in the sense that the shifts $\zeta(s+i\tau,\alpha;\mathfrak{a})$, $\tau\in\mathbb{R}$, uniformly on compact subsets of the strip $D=\left\{s\in\mathbb{C}:\frac{1}{2}<\sigma<1\right\}$, approximate every analytic function. For a precise statement of the universality for $\zeta(s,\alpha;\mathfrak{a})$, we need some notation. Denote by $\mathscr K$ the class of compact subsets of D with connected complements. For $K\in\mathscr K$, let H(K) denote the class of continuous functions on K which are analytic in the interior of K. Moreover, let meas K stand for the Lebesgue measure of a measurable set $K \subset \mathbb R$. Then the main result of [1] is the following theorem. **Theorem 1.** Suppose that α is a transcendental number, $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon > 0$, $$\liminf_{T\to\infty}\frac{1}{T}\mathrm{meas}\left\{\tau\in[0,T]:\ \sup_{s\in K}|\zeta(s+i\tau,\alpha;\mathfrak{a})-f(s)|<\varepsilon\right\}>0.$$ The aim of the present paper is to replace a hypothesis of Theorem 1 on the transcendence of the parameter α by a wider one. Define the set $L(\alpha) = \{\log(m + \alpha) : m \in \mathbb{N}_0\}$. **Theorem 2.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} , and that $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then the same assertion as in Theorem 1 is valid. Note that if α is a transcendental number, then the set $L(\alpha)$ is linearly independent over \mathbb{Q} . On the other hand, it is known [2] that if α is an algebraic irrational number, then at least 51 percent of elements of the set $L(\alpha)$ are linearly independent over \mathbb{Q} . Thus, it is possible that the set $L(\alpha)$ is linearly independent over \mathbb{Q} even α is an algebraic irrational number. Unfortunately, we do not know any such α . For the proof of Theorem 2, a probabilistic method based on limit theorems on the weak convergence of probability measures in the space of analytic functions will be applied. ## 2. LIMIT THEOREMS Denote by H(D) the space of analytic functions on D equipped with the topology of uniform convergence on compacta. Let $\mathcal{B}(X)$ stand for the Borel field of the space X. In this section, we consider the weak convergence of the probability measure $$P_T(A) \stackrel{def}{=} \frac{1}{T} \mathrm{meas} \left\{ \tau \in [0,T] : \zeta(s+i\tau,\alpha;\mathfrak{a}) \in A \right\}, \qquad A \in \mathscr{B}(H(D)),$$ as $T \to \infty$. Let γ be the unit circle on the complex plane, i. e., $\gamma=\{s\in\mathbb{C}:|s|=1\}$. We start with a limit theorem on the torus $\Omega=\prod_{m=0}^{\infty}\gamma_m$, where $\gamma_m=\gamma$ for all $m\in\mathbb{N}_0$. Since Ω with the product topology 68 Научный отдел and pointwise multiplication is a compact topological Abelian group, on $(\Omega, \mathscr{B}(\Omega))$ the probability Haar measure m_H can be defined, and we have a probability space $(\Omega, \mathscr{B}(\Omega), m_H)$. Let, for $A \in \mathscr{B}(\Omega)$, $$Q_T(A) \stackrel{def}{=} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : ((m + \alpha)^{-i\tau} : m \in \mathbb{N}_0) \in A \right\}.$$ **Lemma 1.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then Q_T converges weakly to the Haar measure m_H as $T \to \infty$. **Proof.** Denote by ω the elements of Ω . For $m \in \mathbb{N}_0$, let $\omega(m)$ be the projection of $\omega \in \Omega$ to the coordinate space γ_m . Then it is well known, see, for example, [3], that the Fourier transform $g_T(\underline{k})$, $\underline{k} = (k_1, k_2, \ldots)$, of the measure Q_T is of the form $$g_T(\underline{k}) = \frac{1}{T} \int_0^T \exp\left\{-i\tau \sum_{m=0}^\infty k_m \log(m+\alpha)\right\} d\tau, \tag{1}$$ where only a finite number of integers k_m are distinct from zero. Now we essentially apply the linear independence of the set $L(\alpha)$. Since $\sum_{m=0}^{\infty} k_m \log(m+\alpha) = 0$ if and only if all $k_m = 0$, we deduce from (1) that $$\lim_{T \to \infty} g_T(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ 0 & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$ This and Theorem 1.4.2 of [4] show that the measure Q_T converges weakly to m_H as $T \to \infty$. Now we will prove a limit theorem for absolutely convergent Dirichlet series. For a fixed $\sigma_1 > 1/2$, and $m \in \mathbb{N}_0$, $n \in \mathbb{N}$, let $v_n(m,\alpha) = \exp\left\{-\left(\frac{m+\alpha}{n+\alpha}\right)^{\sigma_1}\right\}$. Define $$\zeta_n(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m v_n(m,\alpha)}{(m+\alpha)^s}.$$ Then it is known [3] that the latter series is absolutely convergent for $\sigma > 1/2$. For $A \in \mathcal{B}(H(D))$, define $P_{T,n}(A) = \frac{1}{T} \max \{ \tau \in [0,T] : \zeta_n(s+i\tau,\alpha;\mathfrak{a}) \in A \}$. For $\omega \in \Omega$, define one more function $$\zeta_n(s,\alpha,\omega;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m \omega(m) v_n(m,\alpha)}{(m+\alpha)^s},$$ clearly, the series being absolutely convergent for $\sigma > \frac{1}{2}$. Let $\omega_0 \in \Omega$ be a fixed element. On $(H(D), \mathcal{B}(H(D)), m_H)$, define one more probability measure $$\hat{P}_{T,n}(A) = \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \zeta_n(s + i\tau, \alpha, \omega_0; \mathfrak{a}) \in A \right\}.$$ **Lemma 2.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then the both measures $P_{T,n}$ and $\hat{P}_{T,n}$ converges weakly to the same probability measure P_n on $(H(D), \mathcal{B}(H(D)))$ as $T \to \infty$. **Proof.** A proof uses Lemma 1, Theorem 5.1 of [5] and the invariance of m_H , and is independent on the arithmetic nature of the parameter α . Therefore, it remains the same as in the case of transcendental α [1]. The next step in the investigation of the weak convergence of the measure P_T consists of the approximation of the function $\zeta(s,\alpha;\mathfrak{a})$ by $\zeta_n(s,\alpha;\mathfrak{a})$ in the mean. The space H(D) is metrisable. Denote by ρ a metric in H(D) which induces the topology of uniform convergence on compacta. Lemma 3. We have $$\lim_{n\to\infty} \limsup_{T\to\infty} \frac{1}{T} \int_{0}^{T} \rho(\zeta(s+i\tau,\alpha;\mathfrak{a}),\zeta_n(s+i\tau,\alpha;\mathfrak{a})) d\tau = 0.$$ Математика 69 **Proof.** A proof of the lemma in the case of transcendental α in [1] does not use the transcendence property. Therefore, it also remains the same in our case. Let, for $\omega \in \Omega$, $$\zeta(s, \alpha, \omega; \mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m \omega(m)}{(m+\alpha)^s}.$$ Then $\zeta(s,\alpha,\omega;\mathfrak{a})$ is the H(D)-valued random element defined on the probability space $(\Omega,\mathscr{B}(\Omega),m_H)$ [6]. The approximation of the function $\zeta(s,\alpha,\omega;\mathfrak{a})$ by $\zeta_n(s,\alpha,\omega;\mathfrak{a})$ is more complicated, we need some elements of ergodic theory. For $\tau\in\mathbb{R}$, define $a_{\tau}=\{((m+\alpha)^{-i\tau}:m\in\mathbb{N}_0)\}$. Let $\{\varphi_{\tau}:\tau\in\mathbb{R}\}$, where $\varphi_{\tau}(\omega)=a_{\tau}\omega,\,\omega\in\Omega$. Then $\{\varphi_{\tau}:\tau\in\mathbb{R}\}$ is a group of measurable measure preserving transformations of the torus Ω . We will prove the ergodicity of the group $\{\varphi_{\tau}:\tau\in\mathbb{R}\}$. We recall that the set $A\in\mathscr{B}(\Omega)$ is invariant with respect to the group $\{\varphi_{\tau}:\tau\in\mathbb{R}\}$ if, for any $\tau\in\mathbb{R}$, the sets A and $A_{\tau}=\varphi_{\tau}(A)$ differ one from another by a set of m_H -measure zero. The group $\{\varphi_{\tau}:\tau\in\mathbb{R}\}$ is invariant if the σ -field of all invariant sets consists of the sets having m_H -measure 0 or 1. **Lemma 4.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then the group $\{\varphi_{\tau} : \tau \in \mathbb{R}\}$ is ergodic. **Proof.** It is well known that the characters χ of the group Ω are of the form $\chi(\omega) = \prod_{m=0}^{\infty} \omega^{k_m}(m)$, where only a finite number of integers k_m are distinct from zero. First let χ be a non-trivial character, i. e., $\chi(\omega) \not\equiv 1$. Then we have that $$\chi(a_{\tau}) = \prod_{m=0}^{\infty} (m+\alpha)^{-i\tau k_m} = \exp\left\{-i\tau \sum_{m=0}^{\infty} k_m \log(m+\alpha)\right\}.$$ (2) Since the set $L(\alpha)$ is linearly independent over \mathbb{Q} , $\sum_{m=0}^{\infty} k_m \log(m+\alpha) \neq 0$ for every finite number of non-zero integers k_m . Therefore, (2) implies that there exists $\tau_0 \in \mathbb{R} \setminus \{0\}$ such that $$\chi(a_{\tau_0}) \neq 1. \tag{3}$$ Let $A \in \mathcal{B}(\Omega)$ be an invariant set with respect to the group $\{\varphi_{\tau} : \tau \in \mathbb{R}\}$, and I_A be the indicator function. Then we have that, for every $\tau \in \mathbb{R}$ and for almost all $\omega \in \Omega$, $$I_A(a_\tau\omega) = I_A(\omega). \tag{4}$$ Denote by $\hat{g}(\chi)$ the Fourier transform of the function g, i. e., $\hat{g}(\chi) = \int_{\Omega} \chi(\omega)g(\omega)m_H(\mathrm{d}\omega)$. Taking into account (4), we find that $$\hat{I}_A(\chi) = \chi(a_{\tau_0})\hat{I}_A(\chi).$$ This together with (3) shows that $\hat{I}_A(\chi) = 0$ for every non-trivial character χ . Now let χ_0 be the trivial character of the torus Ω , i. e., $\chi_0(\omega) \equiv 1$, and let, for brevity, $\hat{I}_A(\chi_0) = b$. Using the orthogonality property of characters and the equality $\hat{I}_A(\chi) = 0$, we find that, for every character χ of the torus Ω , $$\hat{1}(\chi) = b \int_{\Omega} \chi(\omega) m_H(d\omega) = b \hat{I}_A(\chi) = \hat{b}(\chi).$$ From this the lemma easily follows. **Lemma 5.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then, for almost all $\omega \in \Omega$, $$\lim_{n\to\infty} \limsup_{T\to\infty} \frac{1}{T} \int_{0}^{T} \rho\left(\zeta(s+i\tau,\alpha,\omega;\mathfrak{a}), \zeta_n(s+i\tau,\alpha,\omega;\mathfrak{a})\right) d\tau = 0.$$ 70 Научный отдел **Proof.** In [6], the assertion of the lemma is proved in the case of transcendental α , however, the transcendence is used only for the proof of the ergodicity of the group $\{\varphi_{\tau}: \tau \in \mathbb{R}\}$. Since, by Lemma 4, the group $\{\varphi_{\tau}: \tau \in \mathbb{R}\}$ is ergodic, the proof of the lemma runs in the same way as in [6]. Now we are able to obtain the weak convergence of the measure P_T . However, having in mind the identification of the limit measure, we also consider the measure $$\hat{P}_T(A) = \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \zeta(s + i\tau, \alpha, \omega; \mathfrak{a}) \in A \right\}, \qquad A \in \mathscr{B}(H(D)).$$ **Lemma 6.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then the both measures P_T and P_T converge weakly to the same probability measure P on $(H(D), \mathcal{B}(H(D)))$ as $T \to \infty$. **Proof.** The used method is the same as in the case of transcendental α [1, 6], and uses Lemmas 2, 3 and 5. Now we state the main limit theorem of this section. **Theorem 3.** Suppose that the set $L(\alpha)$ is linearly independent over \mathbb{Q} . Then the measure P_T converges weakly to the distribution P_{ζ} of the random element $\zeta(s, \alpha, \omega; \mathfrak{a})$. **Proof.** We apply Lemmas 4, 6 and the Birkhoff–Khinchine theorem. ### 3. PROOF OF THE UNIVERSALITY THEOREM For the proof of Theorem 2, together with Theorem 3 we need the explicit form of the support of the measure P_{ζ} . The support of P_{ζ} is independent of the arithmetic nature of the parameter α , therefore we may use the following result of [1]. **Theorem 4.** The support of the measure P_{ζ} is the whole of H(D). **Proof of Theorem 2.** By the Mergelyan theorem [7], there exists a polynomial p(s) such that $$\sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{2}. \tag{5}$$ In view of Theorem 4, the polynomial p(s) is an element of the support of the measure P_{ζ} . Thus, for every open neighbourhood G of the polynomial p(s), the inequality $P_{\zeta}(G)>0$ is true. Let $G = \{g \in H(D) : \sup_{s \in K} |g(s) - p(s)| < \varepsilon/2\}$. Using Theorem 3, an equivalent of the weak convergence of probability measures in terms of open sets and the definition of G, we obtain that $$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - p(s)| < \varepsilon/2 \right\} > 0.$$ (6) It remains to replace in this inequality p(s) by f(s). We note that in view of (5), for such τ , $$\sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \varepsilon.$$ Thus, we deduce from (6) that $$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \varepsilon \right\} > 0.$$ The theorem is proved. ## Библиографический список 1. Javtokas A., Laurinčikas A. The universality of the periodic Hurwitz zeta-function // Integral Transforms Spec. Funct. 2006. Vol. 17, № 10. P. 711–722. Heilbronn // J. London Math. Soc. 1961. Vol. 36. P. 171- 3. Laurinčikas A., Garunkštis R. The Lerch Zeta-2. Cassels J. W. S. Footnote to a note of Davenport and Function. Dordrecht: Kluwer, 2002. 189 p. 71 Математика - 4. *Heyer H.* Probability Measures on Locally Compact Groups. Berlin: Springer, 1977. 531 p. - 5. *Billingsley P.* Convergence of Probability Measures. N.Y.: Wiley, 1968. 272 p. - 6. Javtokas A., Laurinčikas A. On the periodic zeta- 4. Heyer H. Probability Measures on Locally Compact function // Hardy-Ramanujan J. 2006. Vol. 29. P. 18-36. 7. Mergelyan S. N. Uniform approximation to functions of complex variable // Usp. Matem. Nauk. 1952. Vol. 7. P. 31-122. # On Universality of Certain Zeta-functions # A. Laurinčikas¹, R. Macaitienė², D. Mokhov³, D. Šiaučiūnas⁴ It is well known that a generalization of the Hurwitz zeta-function — the periodic Hurwitz zeta-function with transcendental parameter is universal in the sense that its shifts approximate any analytic function. In the paper, the transcendence condition is replaced by a simpler one on the linear independence of a certain set. Key words: periodic Hurwitz zeta-function, space of analytic functions, universality, weak convergence. #### References - 1. Javtokas A., Laurinčikas A. The universality of the periodic Hurwitz zeta-function. *Integral Transforms Spec. Funct.*, 2006, vol. 17, no. 10, pp. 711–722. - 2. Cassels J. W. S. Footnote to a note of Davenport and Heilbronn. *J. London Math. Soc.*, 1961, vol. 36, pp. 171–184 - 3. Laurinčikas A., Garunkštis R. *The Lerch Zeta-Function*. Dordrecht, Kluwer, 2002, 189 p. - 4. Heyer H. *Probability Measures on Locally Compact Groups*. Berlin, Springer, 1977, 531 p. - 5. Billingsley P. *Convergence of Probability Measures*. New York, Wiley, 1968, 272 p. - 6. Javtokas A., Laurinčikas A. On the periodic zeta-function. *Hardy-Ramanujan J.*, 2006, vol. 29, pp. 18–36. - 7. Mergelyan S. N. Uniform approximation to functions of complex variable. *Uspekhi Matem. Nauk*, 1952, vol. 7, pp. 31–122. УДК 511.3 # К ОЦЕНКЕ ОДНОГО КЛАССА СУММАТОРНЫХ ФУНКЦИЙ # В. А. Матвеев Аспирант кафедры компьютерной алгебры и теории чисел, Саратовский государственный университет им. Н. Г. Чернышевского, vladimir.matweev@gmail.com Для конечнозначных функций натурального аргумента h(n), имеющих ограниченную сумматорную функцию, оцениваются сумматорные функции вида $\sum\limits_{n\leq x}h(n)n^{it}$, $1\leq |t|\leq T$. Ключевые слова: числовые характеры, сумматорные функции, степенные ряды. В работе [1] было показано, что для числовых характеров Дирихле χ при любом действительном t имеет место оценка вида $$\sum_{n \le x} \chi(n) n^{it} = O(1).$$ В данной работе этот результат обобщается на случай конечнозначных функций натурального аргумента h(n), для которых выполняются условия: 1) $$S(x) = \sum_{n \le x} h(n) = O(1);$$ 2) функция g(x), заданная степенным рядом вида $g(x) = \sum_{n=1}^{\infty} h(n) x^n$, имеет конечный предел в точке x=1. ¹Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania, antanas.laurincikas@mif.vu.lt ²Šiauliai University, P. Višinskio st. 19, LT-77156 Šiauliai, Lithuania, renata.macaitiene@mi.su.lt ³Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania, dmitrij.mochov@mif.vu.lt ⁴Šiauliai University, P. Višinskio st. 19, LT-77156 Šiauliai, Lithuania, siauciunas@fm.su.lt