Библиографический список

1. Harary F., Hayes J. P. Edge fault tolerance in graphs // занных с расширениями графов // Мат. заметки. 2010. Networks. 1993. № 23. P. 135-142.

T. 88, № 5. C. 643–650.

3. Богомолов А. М., Салий В. Н. Алгебраические осно-2. Абросимов М. Б. О сложности некоторых задач, свя- вы теории дискретных систем. М. : Наука, 1997. 368 с.

Minimal Edge Extensions of Palm Trees

D. D. Komarov

Saratov State University, Russia, 410012, Saratov, Astrahanskaya st., 83, KomarovDD@gmail.com

Minimal edge extension of graphs can be regarded as a model of optimal edge fault tolerant implementation of a system. The problem of finding the minimal edge extensions of an arbitrary graph is NP-complete, that's why it is of interest to find classes of graphs for which it is possible to build a minimal edge extension analytically. This paper is about of the one-edge extensions of a graphs from a special class named palm trees. In this paper presents a kind of one-edge extension for some palm trees and the proof that it is minimal.

Key words: minimal extensions of graphs.

References

1. Harary F., Hayes J. P. Edge fault tolerance in graphs. 3. Bogomolov A. M., Saliy V. N. Algebraicheskie osnovy Networks, 1993, no. 23, pp. 135-142. 2. Abrosimov M. B. Complexity of some problems

associated with the extension of graphs. Math. Notes, 2010, vol. 88, no. 5, pp. 643-650.

teorii diskretnykh sistem [Algebraic foundations of the theory of discrete systems]. Moscow, Nauka, 1997, 368 p. (in Russian).

УДК 621.397.74

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И АНАЛИЗ ВОЗДЕЙСТВИЯ ИСКАЖЕНИЙ НА OFDM/QAM-СИГНАЛ

А. А. Львов¹, В. В. Киселёв²

¹Доктор технических наук, профессор, заведующий кафедрой автоматики и телемеханики, Саратовский государственный технический университет им. Гагарина Ю. А., alvova@mail.ru

²Кандидат технических наук, ассистент кафедры автоматики и телемеханики, Саратовский государственный технический университет им. Гагарина Ю. А., kiva@live.ru

В работе рассмотрены математические модели каналов связи с помехами различного типа, их влияние на рабочие точки констелляционных диаграмм в системах с OFDM/QAM сигналами, даны рекомендации по мониторингу каналов.

Ключевые слова: качество канала, мониторинг, математические модели, помехи, констелляционная диаграмма.

Современные системы связи, включая системы и сети цифрового телерадиовещания, характеризуются передачей сжатых потоков информации в реальном времени. Для высокоскоростной передачи цифровых данных положительно зарекомендовала себя технология OFDM (Orthogonal Frequency Division Multiplexing — частотное уплотнение с ортогональными поднесущими) в тандеме с QAMмодуляцией (Quadrature Amplitude Modulation — квадратурно-амплитудная модуляция). Как и другие телекоммуникационные технологии, OFDM/QAM чувствительна к искажениям сигнала, что проявляется в увеличении частоты появления ошибочных битов (Bit Error Rate – BER). Следовательно, одной из важнейших задач, которые необходимо решать при проектировании подобных систем, является анализ степени и результатов воздействия искажений на передаваемый сигнал.

OFDM/QAM сигнал описывается уравнением [1]:

$$z(t) = \operatorname{Re}\left[\exp(2\pi j f t) \sum_{r=0}^{\infty} \sum_{s=0}^{N-1} \sum_{h=H_{\min}}^{H_{\max}} \left(C_{r,s,h} \times \Psi_{r,s,h}(t) \right) \right],$$
(1)

$$\Psi_{r,s,h}(t) = \begin{cases} \exp(2\pi j h'(t - T_g - sT_s - NrT_s)/T_u) \text{ для } (s + Nr)T_s \le t \le (s + Nr + 1)T_s, \\ 0, \text{ в остальных случаях,} \end{cases}$$
(2)

$$h' = h - (H_{\max} + H_{\min})/2,$$
 (3)

$$T_s = T_u + T_g,\tag{4}$$

где N — количество OFDM-символов в кадре передачи; h — номер поднесущей частоты; H_{\min} и H_{\max} — соответственно минимальное и максимальное значения поднесущей частоты (нижняя и верхняя границы); s — номер OFDM-символа, r — номер кадра передачи; T_g — длительность защитного интервала; T_u — длительность полезной части OFDM-символа; T_s — длительность OFDM-символа; f — опорная частота передатчика; $C_{r,s,h}$ — значение QAM-ячейки для поднесущей частоты h в символе s кадра r.

Сигнал $z^*(t)$ на входе приёмного устройства имеет вид [2]

$$z^{*}(t) = z(t) + n(t), \tag{5}$$

где n(t) — функция, описывающая аддитивный сигнал помех и искажения в канале связи, на входе которого действует полезный сигнал z(t).

Обратное преобразование даёт:

$$C_{r,s,h}^* = \exp(-2\pi j f t) \sum_{\tau=(s+Nr)T_s}^{(s+Nr+1)T_s} (z^*(\tau) \times [\Psi_{r,s,h}(\tau)]^{-1}),$$
(6)

где $C^*_{r.s.h}$ в общем виде можно представить:

$$C_{r,s,h}^* = C_{r,s,h} + n_{r,s,h},$$
(7)

где $n_{r,s,h}$ — составляющая n(t), накладываемая на $C_{r,s,h}$ в символе *s* частотной поднесущей *h* кадра *r* после преобразования (6).

Так как $C^*_{r,s,h}$ является комплексным числом, то его вещественную и мнимую части в (7) удобно представить в виде матрицы компонентов:

$$\begin{pmatrix} \operatorname{Re}\left\{C_{r,s,h}^{*}\right\} \\ \operatorname{Im}\left\{C_{r,s,h}^{*}\right\} \end{pmatrix} = \begin{pmatrix} \operatorname{Re}\left\{C_{r,s,h}\right\} \\ \operatorname{Im}\left\{C_{r,s,h}\right\} \end{pmatrix} + \begin{pmatrix} \operatorname{Re}\left\{n_{r,s,h}\right\} \\ \operatorname{Im}\left\{n_{r,s,h}\right\} \end{pmatrix}.$$
(8)

В работе [3] на основе (1), (6) и (8) получена матрица линейного преобразования QAM-сигнала в OFDM-канале с аддитивным гауссовым шумом:

$$\begin{pmatrix}
\operatorname{Re} \{C_{r,s,h}^{*}\} \\
\operatorname{Im} \{C_{r,s,h}^{*}\}
\end{pmatrix} = K \begin{pmatrix}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{pmatrix} \begin{pmatrix}
\cos \theta_{offset} & -\sin \theta_{offset} \\
\sin \theta_{offset} & \cos \theta_{offset}
\end{pmatrix} \times \\
\times \begin{pmatrix}
k_{E} & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & k_{S} \\
0 & 1
\end{pmatrix} \begin{pmatrix}\operatorname{Re} \{C_{r,s,h}\} \\
\operatorname{Im} \{C_{r,s,h}\}
\end{pmatrix} + \begin{pmatrix}
A \cos \phi \\
A \sin \phi
\end{pmatrix} + \begin{pmatrix}\operatorname{Re} \{n_{h}\} \\
\operatorname{Im} \{n_{h}\}
\end{pmatrix},$$
(9)

где K — коэффициент ослабления (затухания) сигнала; θ_i — угол поворота модуляционного созвездия (констелляционной диаграммы) (дрожание фазы), являющийся случайной переменной с гауссовым распределением с нулевым средним значением и дисперсией σ_i^2 ($\theta_i \sim N(0, \sigma_i^2)$); θ_{offset} — угол вращения модуляционного созвездия вокруг своей оси (фазовый сдвиг); k_E — коэффициент усиления для вещественного канала относительно мнимого (несогласованность амплитуд); k_S — угол отклонения от ортогональности вещественной и мнимой компонентов канала (квадратурная ошибка); A и ϕ — соответственно амплитуда и фаза ложного сигнала (интерференция); n_h — аддитивный гауссов шум на частотной поднесущей h.

В таблице представлены модуляционные созвездия для 16-QAM, полученные путём численного моделирования на основе уравнения (9).

Аппроксимируя (9) на случай малых углов фазы, когда $\sin \theta_{offset} \approx \theta_{offset}$ и $\cos \theta_{offset} \approx 1$, без учёта дрожания фазы, и рассматривая эффекты, вызванные различными видами помех как некоррелированные, получим следующие математические ожидания компонентов $C^*_{r,s,h}$:

$$M\left[\operatorname{Re}\left\{C_{r,s,h}^{*}\right\}\right] = M\left[Kk_{E}\operatorname{Re}\left\{C_{r,s,h}\right\} - K\left(k_{E}k_{S} - \theta_{offset}\right)\operatorname{Im}\left\{C_{r,s,h}\right\}\right],$$

$$M\left[\operatorname{Im}\left\{C_{r,s,h}^{*}\right\}\right] = M\left[Kk_{E}\theta_{offset}\operatorname{Re}\left\{C_{r,s,h}\right\} - K\left(k_{E}k_{S} - \theta_{offset} + 1\right)\operatorname{Im}\left\{C_{r,s,h}\right\}\right].$$
(10)

Иска-Модуляционные созвездия жения \mathbf{x} х × 4 ׆ × X Фазовый сдвиг * * ¥ ¥ ж <u>+</u> +) ы $\theta_{offset} = 0.1884$ $\theta_{offset} = 0.6280$ = 1.2246 θ_{offset} X + + × + iα +α **X**4 50 4 х м ÷ 24 t ж ж Несогласованность × + < +× ×+ X ж ж ж + + амплитуд + × X + +20 \mathbf{X} × × x• x x x X + + × +× Xt $k_E = 0.80$ $k_E = 0.40$ $k_E = 0.60$ +× +× +× × x × 4 ж + X + х+ +× èr. Квадратурная ошибка ≫ X X X ★ †Χ -K × × **+**Χ +χ +× × ×+ ×+ --Ð(- Per 2 23 2 ×+ X4 ×t X+ ×t X+ $k_S = -0.24$ $k_{S} = 0.42$ $k_{S} = 0.16$ ÷۴ 簽 الغي ا - **1** - 2 ×. * 100 Дрожание фазы ¥ 惫 * Ħ ¥ 12 × × ž X 渔 7 $\sigma_{i}^{2} = 0.042$ $\sigma_{i}^{2} = 0.064$ $\sigma_i^2 = 0.100$

Примеры искажений констелляционной диаграммы для 16-QAM

Примечание. Маркер «+» — сигнал без наложенных искажений; маркер «×» — тот же сигнал, но с привнесёнными искажениями; штриховые линии ограничивают области безошибочного распознавания символов сигнала; углы θ_i , θ_{offset} , k_S и ϕ — в радианах; коэффициенты K, k_E , A и n_h нормированы.

Анализируя множество принятых символов $C^*_{r,s,h}$, за время передачи кадра NT_s можно оценить параметры K, k_E, k_S и θ_{offset} .

Дисперсия дрожания фазы σ_i^2 определяется из выражения ковариации вещественной и мнимой частей принятого символа $C^*_{r,s,h}$:

$$Cov[\operatorname{Re} \{C_{r,s,h}^*\}, \operatorname{Im} \{C_{r,s,h}^*\}] = -K^2 k_E \sigma_i^2 \left(\operatorname{Re} \{C_{r,s,h}\} \operatorname{Im} \{C_{r,s,h}\} + [\operatorname{Re} \{C_{r,s,h}\}]^2 k_S\right).$$
(11)

Амплитуда A интерферирующего сигнала находится вычислением момента 4-го порядка $m_4[\operatorname{Re} \{C^*_{r,s,h}\}]$ и квадрата дисперсии $D[\operatorname{Re} \{C^*_{r,s,h}\}]$:

$$A = \sqrt[4]{8D[\operatorname{Re}\left\{C_{r,s,h}^{*}\right\}]^{2} - \frac{8}{3}\operatorname{m}_{4}[\operatorname{Re}\left\{C_{r,s,h}^{*}\right\}]}.$$
(12)

Влияние гауссова шума можно оценить, вычислив дисперсию вещественной и мнимой составляющих $C^*_{r,s,h}$:

$$D[\operatorname{Re} \{C_{r,s,h}^*\}] = K^2[\operatorname{Im} \{C_{r,s,h}\}]^2 \sigma_i^2 + D[\operatorname{Re} \{n_h\}] + \frac{A^2}{2}$$

Информатика

$$D[\operatorname{Im} \{C_{r,s,h}^*\}] = K^2 \left([\operatorname{Re} \{C_{r,s,h}\}]^2 + k_S^2 [\operatorname{Im} \{C_{r,s,h}\}]^2 + 2k_S \operatorname{Re} \{C_{r,s,h}\} \operatorname{Im} \{C_{r,s,h}\} \right) \times \\ \times k_E^2 \sigma_i^2 + D[\operatorname{Im} \{n_h\}] + \frac{A^2}{2}.$$
(13)

Проведена верификация (10)-(13) при воздействии на сигнал одного (диаграммы на рис. 1) и одновременном действии двух (рис. 2) типов искажений и аддитивного гауссова шума при различном соотношении сигнал/шум.

Рис. 1. Результаты моделирования при действии на сигнал одного типа искажений: a — несогласованность амплитуд; б — квадратурная ошибка; s — интерференционные искажения; z — фазовый сдвиг; d — дрожание фазы

Рис. 2. Результаты моделирования при действии на сигнал двух типов искажений: a — несогласованность амплитуд 1.2 дБ и сдвиг фазы 0°-4°; б — сдвиг фазы 3° и интерференционные искажения 24–30 дБ; s — квадратурная ошибка 3° и несогласованность амплитуд 0.6–1.5 дБ; e — сдвиг фазы 1.5° и дрожание фазы 0.9°-2.7°

Были сгенерированы группы из 200 сигналов для каждого значения помехи и величины шума, а также пары искажений различной величины. Каждая диаграмма получена на основе 1500 тестов. Результаты первого моделирования представлены в виде диаграмм процентов правильного распознавания символов: сколько раз символ правильно идентифицирован при наличии помехи, а остальные определены как отсутствующие. Видно, что для каждого типа искажений в подавляющем большинстве случаев получены высокие результаты идентификации. Низкие результаты получены лишь при значительном уровне помех и малой величине отношения сигнал/шум: причина кроется в том, что некоторые символы модуляционного созвездия попали за область (ячейку) их верного распознавания.

Результаты второго моделирования получены при фиксированном значении одной помехи и изменении величины другой и представлены в виде диаграмм процентов правильной идентификации при паре искажений. В результатах также преобладает высокий процент верной идентификации. Колонки с низким значением процентов идентификации относятся к искажениям, которые не были добавлены: причина, как и в предыдущем случае, в том, что наблюдаемые символы вытеснялись за границы ячеек верного распознавания.

Таким образом, с помощью соотношений (10)–(13), полученных из математической модели (1), возможно производить анализ степени воздействия типовых искажений на исходный OFDM/QAMсигнал, а также выявлять эти самые искажения в уже принятом сигнале, что позволит в последующем осуществлять коррекцию принятого сигнала с целью повышения достоверности и скорости передачи информации.

Библиографический список

1. Киселёв В. В., Светлов М. С. Математическая модель канала передачи данных системы цифрового телерадиовещания // Проблемы управления, передачи и обработки информации (АТМ ТКИ-50) : сб. тр. междунар. науч. конф. / Сарат. гос. техн. ун-т. Саратов, 2009. С. 250–252.

2. Киселёв В. В., Львов А. А., Светлов М. С. Особен- З. Киселёв В. В., Львов А. А., Светлов М. С., Муности моделирования одночастотных сетей цифрового хамбетжанов А. С. Мониторинг каналов в системах телерадиовещания стандарта DVB-T // Вестн. Сарат. с OFDM/QAM сигналами // Вестн. Сарат. гос. техн. гос. техн. ун-та. 2010. № 4(51). С. 145–150.

ун-та. 2010. № 4(50). С. 13-17.

Numerical Modelling and the Analysis of Impact of Distortions on OFDM/QAM-signal

A. A. Lvov, V. V. Kiselev

Saratov State Technical University, Russia, 410054, Saratov, Politekhnicheskaya st., 77, alvova@mail.ru, kiva@live.ru

In this work mathematical models of communication channels with various interferences, their influence on constellation diagrams' points in systems with OFDM/QAM signals are considered, recommendations about channel monitoring are made.

Key words: communication channel quality, monitoring, mathematic models, interferences, constellation diagram.

Библиографический список

1. Kiselev V. V., Svetlov M. S. Mathematical model of a data link of system of digital TV and radio broadcasting. Collection of works of the international scientific conference ATM TKI-50, Saratov, 2009, pp. 250-252 (in Russian).

2. Kiselev V. V., Lvov A. A., Svetlov M. S. Features of modeling of single-frequency networks of digital TV and radio broadcasting of the DVB-T standard. Vestnik

Saratov. Gos. Tekhn. Univ., 2010, no. 4(51), pp. 145-150 (in Russian).

3. Kiselev V. V., Lvov A. A., Svetlov M. S., Mukhambetzhanov A. S. Monitoring of channels in systems with OFDM/QAM signals. Vestnik Saratov. Gos. Tekhn. Univ., 2010, № 4(50), pp. 13-17 (in Russian).