

га для функций с существенным спектром из однородных пространств и стабилизация решений параболических уравнений // Мат. заметки. 2012. Т. 92, № 5. С. 643–661. [Baskakov A. G., Kaluzhina N. S. Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations // Math. Notes. 2012. Vol. 92, № 5. P. 643–661.]

УДК 517.9

О СВЯЗИ ПРОИЗВОДНОЙ МНОГОЗНАЧНОГО ОТОБРАЖЕНИЯ И ЕГО ОПОРНОЙ ФУНКЦИИ

Е. С. Половинкин

Московский физико-технический институт (государственный университет), Долгопрудный E-mail: polovinkin@mail.mipt.ru

В работе получены достаточные условия, при которых опорная функция производной многозначного отображения в некотором смысле совпадает с производной опорной функции многозначного отображения. Приведен пример несовпадения этих понятий и пример липшицева многозначного отображения, опорная функция которого ни в одной точке не имеет смешанных производных.

Ключевые слова: касательные конусы, производная многозначного отображения, опорная функция.

8. *Баскаков А. Г.* Исследование линейных дифференциальных уравнений методами спектральной теории разностных операторов и линейных отношений // УМН. 2013. Т. 68, № 1 (409). С. 77–128. [*Baskakov A. G.* The study of linear differential equations by the methods of the spectral theory of differential operators and linear relations // UMN. 2013. Vol. 68, № 1 (409). Р. 77–128.]

On Relationship between Derivative of Multifunction and Its Support Function

E. S. Polovinkin

We obtain sufficient conditions under which the support function of the derivative of a set-valued mapping coincides with the derivative of the support function of a set-valued mapping in some sence. The example showing the difference between these concepts and the example of a Lipschitz set-valued mapping whose support function at any point does not have the mixed derivatives are obtained.

Key words: tangent cones, derivative of multifunctions, support function.

ВВЕДЕНИЕ

Проблему дифференцирования многозначных отображений $F: X \to \mathcal{P}(Y)$ (где $\mathcal{P}(Y)$ — множество всех подмножеств некоторого банахова пространства Y) исследовали многие ученые. В работах Ж.-П. Обена (J.-P. Aubin) и автора (см., например, [1,2]) впервые было введено понятие производной многозначного отображения, связанное с понятием касательного конуса к графику отображения.

В то же время выпуклозначные отображения удобно исследовать, используя опорную функцию этих отображений. Некоторые авторы пытались строить аппроксимации многозначных отображений, опираясь на первую производную опорной функции $x \to s(p,F(x))$ (где $s(p,A) \doteq \sup\{\langle p,x\rangle | \ x \in A\} - 0$ опорная функция множества $A \subset Y$ в точке $p \in Y^*$) и даже на смешанную производную $\frac{\partial^2 s(p,F(x))}{\partial x \partial p}$. В некоторых исследованиях им требовалось существование этой смешанной производной $\frac{\partial^2 s(p,F(x))}{\partial x \partial p}$, что предполагалось верным почти всюду для любого липшицева выпуклозначного отображения.

Производная функции $x \to s(p, F(x))$, являясь положительно однородной выпуклой функцией по p, задает опорную функцию некоторого многозначного отображения по x.

В нашей работе мы покажем, что в произвольной точке $x_0 \in X$ (даже при значениях p из нормального конуса к непустому множеству $F(x_0)$) производная функции $x \to s(p,F(x))$ в точке x_0 может отличаться от опорной функции многозначной L-производной исходного отображения F в этой точке, т. е. производная опорной функции не всегда осуществляет хорошую аппроксимацию многозначного отображения F. Приведем достаточные условия, при которых производная от опорной функции отображения F задает локальную коническую аппроксимацию этого отображения. В п. 3 приведем пример липшицева многозначного отображения, у которого отсутствуют смешанные производные $\frac{\partial^2 s(p,F(x))}{\partial x^2}$ его опорной функции.

© Половинкин Е. С., 2013

Уточним определения. Пусть X,Y — банаховы пространства. Через $\mathcal{K}(Y)$ ($\mathcal{F}(Y)$) будем обозначать метрическое (топологическое) пространство компактов (непустых замкнутых подмножеств) из пространства Y с хаусдорфовым расстоянием $h(\cdot,\cdot)$ (с соответствующей топологией), а через со $\mathcal{K}(Y)$ или со $\mathcal{F}(Y)$ — подпространства выпуклых подмножеств из Y, входящие в $\mathcal{K}(Y)$ или в $\mathcal{F}(Y)$ соответственно. Расстоянием, по Хаусдорфу, между множествами $A,B\subset X$ называется

$$h(A, B) \doteq \inf\{r \geq 0 \mid A \subset B + B_r(0), B \subset A + B_r(0)\},\$$

где $B_r(a) \doteq \{x \in X | \|x-a\| < r\}$ — открытый шар радиуса r>0 с центром в точке a. Произведение на число, сумма и разность Минковского множеств определяются по формулам $\lambda A = \{x \in X \mid x = \lambda a, a \in A\}, A+B \doteq \{x \in X \mid x = a+b, a \in A, b \in B\}, A \stackrel{*}{=} B \doteq \{x \in X \mid x+B \subset A\}.$ $\varrho(x,A) \doteq \inf\{\|x-y\| \mid y \in A\}$ — расстояние от точки до множества. Конусом называется всякое непустое множество $T_0 \subset X$, у которого для каждого элемента $x \in T_0$ справедливо включение $\lambda x \in T_0$ при всех $\lambda > 0$. Выпуклой конической оболочкой множества A называется

cone
$$A \doteq \left\{ x \in X | \ x = \sum_{i=1}^{m} \lambda_i x_i, \ \lambda_i \ge 0, \ x_i \in A, \ m \in \mathbb{N} \right\}.$$

Замыкание множества A обозначаем \overline{A} . Барьерным конусом $b(A) \subset Y^*$ выпуклого множества $A \subset Y$ (см., например, [3]) называется конус $b(A) \doteq \{p \in Y^* \mid s(p,A) < +\infty\}$. Рецессивным конусом выпуклого множества $A \subset Y$ называется множество $0^+(A) \doteq \{x \mid x+A \subset A\}$ (см. [4]), т. е. $0^+(A) = A \stackrel{*}{=} A$. Для произвольного конуса K через $K^0 \doteq \{p \in Y^* \mid \langle p,x \rangle \leq 0, \ \forall \ x \in K\}$ определяется полярный (отрицательный) конус K.

Среди множества известных типов касательных конусов к невыпуклому множеству рассмотрим лишь два их ярких представителя.

Нижним касательным конусом (см. [3,5]) ко множеству $A\subset X$ в точке $a\in \overline{A}$ называется нижний топологический предел вида

$$T_H(A; a) \doteq \liminf_{\lambda \downarrow 0} \frac{A - a}{\lambda} \doteq \{ v \in X \mid \lim_{\lambda \downarrow 0} \varrho(v, \lambda^{-1}(A - a)) = 0 \}.$$

Верхним касательным конусом (иначе называют: контингентным конусом, или конусом Булигана (см. [3,6])) ко множеству $A\subset X$ в точке $a\in \overline{A}$ называется верхний топологический предел вида

$$T_B(A; a) \doteq \limsup_{\lambda \downarrow 0} \frac{A - a}{\lambda} \doteq \{ v \in X \mid \liminf_{\lambda \downarrow 0} \varrho(v, \lambda^{-1}(A - a)) = 0 \}.$$

Очевидно включение $T_H(A;a) \subset T_B(A;a)$. Если же множество A выпукло (или локально выпукло), то имеет место равенство указанных конусов.

1. ПРОИЗВОДНЫЕ ОТ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ

Для каждого касательного конуса, следуя [1,2], определим соответствующую производную от многозначного отображения, которую будем называть аналогично названию конуса, т. е. верхней (В) или нижней (Н) производной по направлениям.

Определение 1. Пусть $L\in\{B,H\}$. L-производной от многозначного отображения $F\colon X\to \mathcal{P}(Y)$ в точке $z_0\in\overline{\mathrm{graph}\,F}\subset X\times Y$ называется отображение $D_LF(z_0)\colon X\to \mathcal{F}(Y)$ вида

$$D_L F(z_0)(u) \doteq \{ v \in Y \mid (u, v) \in T_L(\text{graph } F; z_0) \}, \quad u \in X.$$

Из определения 1, очевидно, следует включение $D_H F(z)(u) \subset D_B F(z)(u)$.

Предложение 1. Для $F: X \to \mathcal{P}(Y)$ в точке $z_0 \doteq (x_0, y_0) \in \overline{\operatorname{graph} F}$ и $u \in X$ справедливы равенства

$$D_B F(z_0)(u) = \{ v \in Y | \liminf_{\substack{\lambda, x:\\ \lambda \downarrow 0, x \to u}} \varrho_Y(v, \lambda^{-1}(F(x_0 + \lambda x) - y_0)) = 0 \},$$

$$D_H F(z_0)(u) = \{ v \in Y | \lim_{\lambda \downarrow 0} (\liminf_{x \to u} \varrho_Y(v, \lambda^{-1}(F(x_0 + \lambda x) - y_0))) = 0 \}.$$

Формулы упрощаются, когда F является псевдолипшицевым по Ж.-П. Обену [7].

Определение 2. Отображение $F: X \to \mathcal{P}(Y)$ называется псевдолипшицевым около точки $z_0 \doteq (x_0, y_0) \in X \times Y$, если существуют числа $\alpha_1 > 0$, $\alpha_2 > \varrho(y_0, F(x_0))$ и константа l > 0 такие, что для всех $x_1, x_2 \in B_{\alpha_1}(x_0)$ справедливо включение

$$F(x_1) \bigcap \overline{B_{\alpha_2}(y_0)} \subset F(x_2) + l \|x_1 - x_2\| \overline{B_1(0)}.$$

Предложение 2.Пусть отображение $F: X \to \mathcal{P}(Y)$ псевдолипшицевое около точки $z_0 \doteq (x_0, y_0) \in \overline{\operatorname{graph} F}$. Тогда для любого $u \in X$ справедливы равенства

$$D_B F(z_0)(u) = \limsup_{\lambda \to 0} \lambda^{-1} (F(x_0 + \lambda u) - y_0), \tag{1}$$

$$D_H F(z_0)(u) = \liminf_{\lambda \downarrow 0} \lambda^{-1} (F(x_0 + \lambda u) - y_0).$$
 (2)

Теорема 1. Пусть отображение $F: X \to \mathcal{F}(\mathbb{R}^m)$ псевдолипшицевое около точки $z_0 \doteq (x_0, y_0) \in \overline{\operatorname{graph} F}$ с константой l > 0. Тогда множества $D_B F(z_0)(u)$ не пусты при всех $u \in X$, а отображение $u \to D_B F(z_0)(u)$ удовлетворяет условию Липшица с той же константой l > 0.

2. О РАЗЛИЧИИ И СВЯЗИ ПРОИЗВОДНЫХ

Напомним, что опорной функцией отображения $F \colon X \to \mathcal{P}(Y)$ называется опорная функция его значений F(x), т. е.

$$s(p, F(x)) \doteq \sup\{\langle p, y \rangle \mid y \in F(x)\}, \qquad p \in Y^*.$$

В дальнейшем полагаем, что отображение $F\colon X\to \operatorname{co}\mathcal F(Y)$ псевдолипшицевое около заданной точки $z_0\doteq (x_0,y_0)\in \overline{\operatorname{graph} F}$. Зафиксируем направление $u\in X$ и перейдем к более простому отображению $Q:[0,1]\to \operatorname{co}\mathcal F(Y)$ вида

$$Q(\lambda) \doteq F(x_0 + \lambda u) - y_0, \qquad \lambda \in [0, 1]. \tag{3}$$

Тогда включение $z_0 \doteq (x_0, y_0) \in \overline{\operatorname{graph} F}$ заменяется на включение $(0,0) \in \overline{\operatorname{graph} Q}$, и справедливы равенства $D_L F(z_0)(u) = D_L Q(0,0)(1), \ \forall \ L \in \{B,H\}$. Для отображения Q обозначим через

$$K_0 \doteq \{ p \in Y^* | \ s(p, Q(0)) = 0 \}$$
(4)

конус, который назовём нормальным конусом ко множеству Q(0) в точке $0 \in Q(0)$.

Пример 1. Пусть отображение $Q: [0,1] \to \mathcal{F}(\mathbb{R}^2)$ имеет вид

$$Q(\lambda) \doteq \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 1], \ y = \lambda x\}.$$

Очевидно, что существует предел $\lim_{\lambda\downarrow 0}\lambda^{-1}Q(\lambda)$ и он равен прямой $\{(x,0)\mid x\in\mathbb{R}\}\subset\mathbb{R}^2$. Поэтому существуют L-производные отображения $Q(\cdot)$ в точке графика $(0,0)\in\mathbb{R}^1\times\mathbb{R}^2$ по направлению $\widetilde{u}=1$, причём они равны

$$D_H Q(0,0)(1) = D_B Q(0,0)(1) = \lim_{\lambda \downarrow 0} \lambda^{-1} Q(\lambda).$$

Отсюда для векторов из нормального конуса K_0 (см. (4)), принимающих вид $p_{\alpha}=(0,\alpha), \ \forall \ \alpha \in \mathbb{R}^1$, легко получаем:

$$s(p_{\alpha}, D_H Q(0, 0)(1)) = 0, \qquad \forall \ \alpha \in \mathbb{R}^1.$$

$$(5)$$

С другой стороны, так как опорная функция отображения Q равна $s(p_{\alpha},Q(\lambda))=|\alpha|\lambda$, то её производная по λ в нуле равна:

$$\left. \frac{\partial s(p_{\alpha}, Q(\lambda))}{\partial \lambda} \right|_{\lambda = +0} = |\alpha|. \tag{6}$$

Сравнивая (5) и (6), убеждаемся в том, что опорная функция от производной многозначного отображения и производная от опорной функции этого отображения различны.

Математика 15

Uзучим условия, при которых возможно равенство между производной опорной функции и опорной функцией от L-производной многозначного отображения.

Лемма 1. Для отображения $Q: [0,1] \to \operatorname{co} \mathcal{F}(Y)$ и любого $p \in Y^*$ справедливо неравенство

$$\liminf_{\lambda \downarrow 0} s(p, Q(\lambda)) \ge s(p, \liminf_{\lambda \downarrow 0} Q(\lambda)).$$
(7)

Лемма 2. Пусть отображение $Q: [0,1] \to \operatorname{co} \mathcal{F}(Y)$ таково, что $0 \in Q(0)$, и существует число l>0 такое, что при всех $\lambda \in [0,1]$ справедливо неравенство $h(Q(\lambda),Q(0)) \leq l\lambda$. Тогда верны равенства

$$\overline{\text{cone}} \ Q(0) = 0^+(D_H Q(0)(1)) = 0^+(D_B Q(0)(1)),$$
 (8)

$$K_0 = b(D_H Q(0)(1)) = b(D_B Q(0)(1)),$$
 (9)

 $еде K_0$ — нормальный конус (4).

Доказательство. Прежде всего отметим, что в силу (1), (2) справедливы равенства

$$D_H Q(0)(1) = \liminf_{\lambda \downarrow 0} \frac{Q(\lambda)}{\lambda}, \qquad D_B Q(0)(1) = \limsup_{\lambda \downarrow 0} \frac{Q(\lambda)}{\lambda}.$$

По условию леммы справедливы включения

$$\frac{Q(0)}{\lambda} \subset \frac{Q(\lambda)}{\lambda} + \overline{B_{l+\lambda}(0)}, \qquad \frac{Q(\lambda)}{\lambda} \subset \frac{Q(0)}{\lambda} + \overline{B_{l+\lambda}(0)}, \qquad \forall \ \lambda \in (0,1), \tag{10}$$

откуда в пределе получаем:

$$\begin{cases}
\overline{\operatorname{cone}} Q(0) \subset \overline{D_H Q(0)(1) + B_l(0)}, \\
D_B Q(0)(1) \subset \overline{\operatorname{cone}} Q(0) + B_l(0).
\end{cases}$$
(11)

Учитывая равенство $0^+(\overline{A+B}) = 0^+(A)$, если $A, B \in \operatorname{co} \mathcal{F}(Y)$ и B ограниченное множество, и включение $0^+(A) \subset 0^+(B)$, если $A \subset B$ и $A, B \in \operatorname{co} \mathcal{F}(Y)$, из выражений (11) получаем равенство (8).

Очевидно, что для конуса K_0 (см.(4)) справедливы равенства полярных конусов:

$$(\operatorname{cone} Q(0))^0 = K_0, \qquad (K_0)^0 = \overline{\operatorname{cone}} Q(0).$$
 (12)

Аналогично, переходя в равенстве (8) к полярным конусам и воспользовавшись равенствами (12) и равенством $\overline{b(A)} = (0^+(A))^0$, $\forall A \in \text{co}\,\mathcal{F}(Y)$ (см., например, [4]), получаем равенство замыканий множеств, входящих в выражение (9). Покажем, что замыкания в равенстве можно убрать. Так как конус K_0 замкнут, то достаточно доказать включение $K_0 \subset b(D_HQ(0)(1))$. Пусть $p \in K_0$, тогда в силу неравенств (7) и включений (10) получаем неравенства

$$s(p, D_H Q(0)(1)) \le \liminf_{\lambda \downarrow 0} \lambda^{-1} s(p, Q(\lambda)) \le \liminf_{\lambda \downarrow 0} [\lambda^{-1} s(p, Q(0)) + (l + \lambda) ||p||] = l||p||,$$

откуда следует, что $p \in b(D_HQ(0)(1))$.

Определение 3. Пусть у функции $f: X \times Y \to \mathbb{R}^1$ в точке $(x_0, y_0) \in X \times Y$ существует классическая производная по направлению $(u, 0) \in X \times Y$, т. е. $f'((x_0, y_0), (u, 0)) \doteq \lim_{\lambda \downarrow 0} \lambda^{-1} (f(x_0 + \lambda u, y_0) - f(x_0, y_0))$. Тогда назовем ее uacmhoй производной функции f в точке x_0 по направлению $u \in X$ при фиксированном $y_0 \in Y$.

Для исследования частной производной в точках (x_0,y) при $y\in A$, где $A\subset Y$, определим функцию $o:(0,1)\times A\to \mathbb{R}^1$ по формуле

$$o(\lambda, y) \doteq f(x_0 + \lambda u_0, y) - f(x_0, y) - \lambda f'((x_0, y), (u_0, 0)), \tag{13}$$

для которой по определению следует равенство $\lim_{\lambda\downarrow 0}\lambda^{-1}o(\lambda,y)=0.$

Определение 4. Пусть заданы $f: X \times Y \to \mathbb{R}^1, x_0 \in X, u_0 \in X$ и $A \subset Y$. Скажем, что частная производная $f'((x_0,y),(u_0,0))$ равномерна по переменному y на A, если 1) $f'((x_0,y),(u_0,0))$ существует для всех $y \in A$, 2) для функции (13) справедливо равенство $\lim_{\lambda \downarrow 0} (\sup_{y \in A} \lambda^{-1} |o(\lambda,y)|) = 0$.

Теорема 2. Пусть отображение $Q: [0,1] \to \operatorname{co} \mathcal{F}(Y)$ таково, что $0 \in Q(0)$ и существует число l>0 такое, что для всех $\lambda \in [0,1]$ справедливо $h(Q(\lambda),Q(0)) \leq l\lambda$. Пусть $K_0 \doteq \{p \in Y^* | s(p,Q(0))=0\}$, причем $K_0 \neq \{0\}$. На множестве $[0,1] \times K_0$ определим функцию $f(\lambda,p) \doteq s(p,Q(\lambda))$. Пусть ее частная производная $p \to f'((0,p),(1,0))$ равномерна по переменному p на множестве $K_0 \cap \partial \overline{B_1(0)}$, линейна и непрерывна на конусе K_0 . Тогда отображение Q дифференцируемо в точке $(0,0) \in \operatorname{graph} Q$ по направлению 1, т. е. $D_HQ(0,0)(1) = D_BQ(0,0)(1)$, и справедливо равенство $f'((0,p),(1,0)) = s(p,D_BQ(0,0)(1))$, $\forall p \in K_0$.

Доказательство. Для краткости введём обозначение

$$\alpha(p) \doteq f'((0,p),(1,0)) = \lim_{\lambda \downarrow 0} s\left(p, \frac{Q(\lambda)}{\lambda}\right), \qquad \forall \ p \in K_0.$$
 (14)

При $p \notin K_0$ полагаем, что функция $\alpha(p)$ равна $+\infty$. В силу условий теоремы функция $\alpha: Y^* \to \overline{\mathbb{R}^1}$ является ограниченной на $K_0 \cap \overline{B_1(0)}$, полунепрерывной снизу, положительно однородной и выпуклой (в силу линейности) функцией. Поэтому (см. [4]) существует непустое выпуклое замкнутое множество $M \subset Y$ такое, что

$$\alpha(p) = s(p, M), \qquad \forall \ p \in Y^*. \tag{15}$$

В силу неравенства (7) получаем, что

$$\alpha(p) \ge s\left(p, \limsup_{\lambda \downarrow 0} (\lambda^{-1}Q(\lambda))\right), \quad \forall p \in Y^*,$$

т. е. $M \supset D_BQ(0,0)(1)$. Определим функцию $o(\lambda,p)$ из равенства

$$f(\lambda, p) \doteq s(p, Q(\lambda)) = \lambda \alpha(p) + o(\lambda, p), \qquad p \in K_0.$$
 (16)

В силу условий теоремы (линейности и непрерывности $\alpha(p)$ на конусе K_0) и свойств опорных функций из равенства (16) получаем, что функция $p \to o(\lambda, p)$ непрерывна, положительно однородна и выпукла на замкнутом выпуклом конусе K_0 . При $p \notin K_0$ доопределим функцию $o(\lambda, p)$ равной $+\infty$. Следовательно, функция $p \to o(\lambda, p)$, $p \in Y^*$ также является опорной функцией некоторого выпуклого замкнутого (непустого) множества $B(\lambda)$. В силу равенств (12) и (16) получаем следующее включение:

$$\overline{Q(\lambda) + \text{cone } Q(0)} \supset \lambda M + B(\lambda). \tag{17}$$

Кроме того, из равенства (8) следует $D_HQ(0,0)(1) + \overline{\text{cone}} \ Q(0) = D_HQ(0,0)(1)$, откуда, поделив (17) на $\lambda > 0$, в нижнем пределе по $\lambda \downarrow 0$ получаем:

$$D_H Q(0,0)(1) \supset M+B,$$
 где $B \doteq \liminf_{\lambda \downarrow 0} \frac{B(\lambda)}{\lambda}.$ (18)

Покажем, что точка нуль принадлежит множеству B и поэтому из включения (18) получим включение $M \subset D_H Q(0,0)(1)$, что и завершит доказательство теоремы. Так как по условию теоремы производная f'((0,p),(1,0)) равномерна по переменному p на множестве $K_0 \cap \partial \overline{B_1(0)}$, то справедливо равенство

$$\lim_{\lambda \downarrow 0} \left(\sup_{p \in K_0 \cap \partial \overline{B_1(0)}} \lambda^{-1} |o(\lambda, p)| \right) = 0,$$

которое означает, что для любого числа $\varepsilon>0$ найдётся число $\delta>0$ такое, что для всех $\lambda\in(0,\delta)$ и всех $p\in K_0\cap\partial\overline{B_1(0)}$ имеет место неравенство $\lambda^{-1}|o(\lambda,p)|<\varepsilon$, т. е. для всех $\lambda\in(0,\delta)$ непусто пересечение множеств вида $\lambda^{-1}B(\lambda)\cap B_\varepsilon(0)$, что влечёт включение $0\in B$.

Лемма 3. Пусть число l>0 и отображение $Q\colon [-1,1]\to \operatorname{co}\mathcal{F}(Y)$ таковы, что $0\in Q(0)$, $h(Q(\lambda),Q(0))\leq l|\lambda|,\ \forall\ \lambda\in [-1,1].$ Пусть $K_0\doteq \{p\in Y^*|\ s(p,Q(0))=0\}$, причем $K_0\neq \{0\}$. Пусть у функции $f(\lambda,p)\doteq s(p,Q(\lambda))$ при каждом $p\in K_0$ существуют производные f'((0,p),(1,0)) и f'((0,p),(-1,0)), для которых справедливо равенство

$$f'((0,p),(1,0)) = -f'((0,p),(-1,0)), \qquad \forall \ p \in K_0.$$
(19)

Тогда функция $\alpha(p) \doteq f'((0,p),(1,0))$ линейна на конусе K_0 .

Математика 17

Доказательство. Из выпуклости опорной функции, т. е. неравенств

$$|\lambda|^{-1}s(\alpha p_1 + \beta p_2, Q(\lambda)) \le |\lambda|^{-1}\alpha s(p_1, Q(\lambda)) + |\lambda|^{-1}\beta s(p_2, Q(\lambda)),$$

в пределе при $\lambda \to +0$ и при $\lambda \to -0$ получаем выпуклость функций $p \to \alpha(p)$ и $p \to f'((0,p),(-1,0))$. Отсюда и из равенства (19) получаем линейность функции $\alpha(\cdot)$.

Лемма 4. Пусть отображение $F: X \to \operatorname{co} \mathcal{F}(Y)$ удовлетворяет условию псевдолипшицевости в точке $z_0 \doteq (x_0, y_0) \in \operatorname{graph} F$ с константой l > 0. Определим конус $K_0 \doteq \{p \in Y^* | s(p, F(x_0)) - (p, y_0) = 0\}$ и пусть $K_0 \doteq K_0 \cap \partial \overline{B_1(0)} \neq \emptyset$. Пусть существует $\varepsilon > 0$ такое, что при каждом $p \in \widetilde{K_0}$ функция $f(x, p) \doteq s(p, F(x))$ дифференцируема в смысле Фреше по x на множестве $\overline{B_\varepsilon(x_0)}$, причём для любого $u \in \partial \overline{B_1(0)}$ функция $(x, p) \to \left\langle \frac{\partial f(x, p)}{\partial x}, u \right\rangle$ равномерно непрерывна на множестве $\overline{B_\varepsilon(x_0)} \times \widetilde{K_0}$. Тогда функция $f(\cdot, \cdot)$ имеет частную производную $f'((x_0, p), (u, 0))$ по любому направлению $u \in X$, равномерную по p на множестве $\widetilde{K_0}$.

Доказательство. Для доказательства леммы, т. е. проверки определения 1, достаточно доказать равенство

$$\lim_{\lambda \downarrow 0} \left\{ \sup_{p \in \widetilde{K_0}} \lambda^{-1} \left| f(x_0 + \lambda u, p) - f(x_0, p) - \lambda \left\langle \frac{\partial f(x_0, p)}{\partial x}, u \right\rangle \right| \right\} = 0.$$
 (20)

В свою очередь, последнее равенство следует из теоремы о среднем, т. е. из следующего равенства при $\lambda \in (0,1)$:

$$f(x_0 + \lambda u, p) - f(x_0, p) = \lambda \left\langle \frac{\partial f(x_0 + \theta(\lambda, p)u, p)}{\partial x}, u \right\rangle$$

где $\theta(\lambda,p)\in[0,\lambda]$, и из равномерной непрерывности функции $(x,p)\to\left\langle \frac{\partial f(x,p)}{\partial x},u\right\rangle$ на множестве $\overline{B_{\varepsilon}(x_0)}\times\widetilde{K_0}$.

Теорема 3. Пусть отображение $F: X \to \operatorname{co} \mathcal{F}(Y)$ псевдолипшицевое около некоторой точки $z_0 \doteq (x_0,y_0) \in \operatorname{graph} F$ с константой l>0, и функция $f(x,p) \doteq s(p,F(x))$ удовлетворяет всем условиям леммы 4. Тогда

$$D_H F(z_0)(u) = D_B F(z_0)(u); \quad f'((x_0, p), (u, 0)) = s(p, D_B F(x_0, y_0)(u)), \quad \forall u \in X, \ p \in K_0.$$
 (21)

Доказательство. Воспользуемся для произвольного фиксированного $u \in X$ заменой (3), (4), и преобразуем данные условия (например, (20)), после чего в силу теоремы 2, леммы 3 и леммы 4 получаем равенства (21), где $K_0 \doteq \{p \in Y^* \mid s(p, F(x_0)) - \langle p, y_0 \rangle = 0\}$.

Теорема 4. Пусть X рефлексивно, а Y гильбертово, и отображение $F: X \to \operatorname{co} \mathcal{F}(Y)$ удовлетворяет условиям теоремы 3. Тогда нижняя производная $D_H F(z_0)$ имеет выпуклый график.

Доказательство. Докажем выпуклость графика нижней производной, т. е. выпуклость касательного конуса $T_H(\operatorname{graph} F; z_0)$.

Для любого $u \in X$ соответствующая ему функция $\alpha(\cdot)$ из (14) принимает вид

$$\alpha_u(p) = \left\{ \left\langle \frac{\partial s(p, F(x_0))}{\partial x}, u \right\rangle, \quad \text{при } p \in K_0; \\ +\infty, \qquad \qquad \text{при } p \notin K_0. \right\}$$
 (22)

При этом по лемме 3 каждая такая функция $\alpha_u(\cdot)$ линейна на конусе K_0 . Поэтому и функционал $\frac{\partial s(\cdot,F(x_0))}{\partial x}:K_0\to X^*$ также является линейным по p оператором. В самом деле, в противном случае нашлись бы векторы $p_1,p_2\in K_0$ такие, что функционал

$$g_0 \doteq \frac{\partial s(p_1 + p_2, F(x_0))}{\partial x} - \frac{\partial s(p_1, F(x_0))}{\partial x} - \frac{\partial s(p_2, F(x_0))}{\partial x}$$
(23)

не равен нулю. По теореме Хана-Банаха в рефлексивном пространстве X для $g_0 \in X^*$ найдется вектор $u_0 \in X$ такой, что $\langle g_0, u_0 \rangle = \|g_0\| \neq 0$. Тогда взяв в формуле (22) функцию $\alpha_u(\cdot)$ при $u = u_0$ и применив функционал g_0 (23) к вектору u_0 , получим для функции $\alpha_{u_0}(\cdot)$ равенство

 $||g_0|| = \alpha_{u_0}(p_1 + p_2) - \alpha_{u_0}(p_1) - \alpha_{u_0}(p_2) \neq 0$, что противоречит доказанной ранее линейности функции $\alpha_{u_0}(\cdot)$ на конусе K_0 .

Введём линейное подпространство $L\subset Y^*$ из равенства $L\doteq K_0+(-K_0)$ и определим на нём оператор $A:L\to X^*$ по формуле

$$Ap \doteq \frac{\partial s(p_1, F(x_0))}{\partial x} - \frac{\partial s(p_2, F(x_0))}{\partial x}$$
 при $p_1, p_2 \in K_0$, $p \doteq p_1 - p_2$. (24)

Из линейности оператора $\dfrac{\partial s(\cdot,F(x_0))}{\partial x}\colon K_0\to X^*$ следует корректность этого определения, т. е. независимость от неоднозначности выбора векторов $p_1,p_2\in K_0$ при задании $p\in L$, и его линейность на L. При этом для любого $p\in K_0$ справедливо равенство $Ap=\dfrac{\partial s(p,F(x_0))}{\partial x}$. Продолжим линейный оператор A с подпространства A на всё пространство A0 гобым допустимым образом, и пусть A1 : A2 — сопряжённый к A3 линейный оператор. Покажем справедливость равенства

$$D_H F(z_0)(u) = A^* u + K_0^0, \quad \forall \ u \in X,$$
 (25)

где K_0^0 — полярный конус к конусу K_0 . В силу (15), (22), (24) получаем цепочку равенств

$$s(p,A^*u+K_0^0)=\langle Ap,u\rangle+s(p,K_0^0)=\begin{cases} \langle Ap,u\rangle, & \text{при } p\in K_0,\\ +\infty, & \text{при } p\notin K_0, \end{cases}=\alpha_u(p),$$

что и означает равенство (25). Из равенства (25), очевидно, следует, что график производной, т.е. конус $T_H(\operatorname{graph} F; z_0)$, выпукл.

3. КОНТРПРИМЕР

В заключение приведем пример (пример 3) липшицева многозначного отображения $F: \mathbb{R}^1 \to \mathrm{co}\,\mathcal{K}(\mathbb{R}^2)$, опорная функция которого всюду не имеет второй смешанной производной. Для этого в начале приведем вспомогательный пример (пример 2).

Пример 2. Пусть C — совершенное канторово множество на отрезке [0;1], а функция $f:[0;1] \to [0;1]$ — канторова лестница (см. определения в $[8,\ r.л.\ 6,\ \S4]$). Определим функцию $g(x) \doteq \int\limits_0^x f(t)dt$ при $x \in [0;1]$. Эта функция g является дифференцируемой и выпуклой функцией, так как ее производная g'(x) = f(x) непрерывна и мононотонно возрастает на [0;1]. График функции g является ломаной линией со счетным числом звеньев, причем для любой точки $x \in [0;1] \setminus C$ существует интервал (a;b) такой, что $x \in (a;b) \subset [0;1] \setminus C$, и существует двоично рациональное число $(2k-1)/2^n$, где $n \in \mathbb{N}, k \in \overline{(1;2^{n-1})}$, такое, что $g'(x) = (2k-1)/2^n$ для всех $x \in (a;b)$. Можно посчитать, что g(0) = g'(0) = 0 и $g(1) = 1/2, \ g'(1) = 1$.

Поворачивая график функции g на угол $\pi/4$ и сдвигая его на точку (1,1/2), получаем другую выпуклую функцию $g_1:\left[1;1+\frac{1}{2\sqrt{2}}\right] \to \left[\frac{1}{2};\frac{3+\sqrt{2}}{2\sqrt{2}}\right]$, т. е. удовлетворяющую формуле

$$\operatorname{graph} g_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \operatorname{graph} g + \left(1, \frac{1}{2}\right).$$

Склеивая эти две функции, получаем функцию h по формуле $h(x) \doteq g(x)$ при $x \in [0;1]$ и $h(x) \doteq g_1(x)$ при $x \in \left[1;1+\frac{1}{2\sqrt{2}}\right]$. По построению функция h непрерывна и выпукла на $\left[0,1+\frac{1}{2\sqrt{2}}\right]$. Определим функции

$$h_1(x) = h(x) - rac{3+\sqrt{2}}{2\sqrt{2}}$$
 при $x \in \left[0\,;\, 1+rac{1}{2\sqrt{2}}
ight],$ $h_1(x) = h_1(-x)$ при $x \in \left[-1-rac{1}{2\sqrt{2}}\,;\, 0
ight],$

Математика 19

$$h_2(x) = -h_1(x)$$
 при $x \in \left[-1 - rac{1}{2\sqrt{2}}\,;\, 1 + rac{1}{2\sqrt{2}}
ight],$

и множество
$$A \doteq \{(x,y) \in \mathbb{R}^2 \mid x \in \left[-1 - \frac{1}{2\sqrt{2}}\,;\, 1 + \frac{1}{2\sqrt{2}}\right], \ y \in [h_1(x);h_2(x)]\}.$$

По построению множество A является выпуклым компактом на плоскости \mathbb{R}^2 , граница которого состоит из восьми частей сдвинутых, повернутых или симметрично отраженных графиков функции g. Рассмотрим опорные множества $A_p \doteq \{(x,y) \in A | \langle p,(x,y) \rangle = s(p,A) \}$ для любого $p \in \mathbb{R}^2$, $\|p\| = 1$. Пусть $\alpha \in (0,\pi/4)$ — угол наклона отрезка ломаной $h_1(x)$ при $x \in (a,b) \subset [0;1] \setminus C$. Тогда вектор нормали к этому отрезку имеет вид $\widetilde{p}(\alpha) = (\lg \alpha; -1)$, причем значение $\lg \alpha$ является двоично рациональным числом вида $\frac{2k-1}{2^n}$, а опорное множество $A_{\widetilde{p}(\alpha)}$ является этим отрезком. Очевидно верно и обратное, при любом $\alpha \in (0,\pi/4)$, для которого $\lg \alpha$ является двоично рациональным числом, опорное множество $A_{\widetilde{p}(\alpha)}$ является отрезком, а не точкой. Так как субдифференциал опорной функции в точке $p \neq 0$ равняется опорному множеству и для дифференцируемости в точке выпуклой функции необходимо, чтобы ее субдифференциал в данной точке являлся одноточечным множеством, то в точках $\widetilde{p}(\alpha)$ опорная функция $p \to s(p,A)$ не дифференцируема. Множество таких точек $\widetilde{p}(\alpha)/\|\widetilde{p}(\alpha)\|$, очевидно, плотно на дуге окружности, состоящей из точек $p(\varphi) = (\cos \varphi, \sin \varphi)$ при $\varphi \in (3\pi/2; 7\pi/4)$. Отсюда и в силу построения множества A получаем, что на единичной окружности существует счетное плотное множество, на котором опорная функция этого множества не дифференцируема.

Пример 3. Рассмотрим множество $A \in \operatorname{co} \mathcal{K}(\mathbb{R}^2)$, построенное в примере 2. Определим многозначное отображение $F : \mathbb{R}^1 \to \operatorname{co} \mathcal{K}(\mathbb{R}^2)$ по формуле

$$F(t) \doteq L(t) A,$$
 где $L(t) \doteq egin{pmatrix} \cos t & -\sin t \ \sin t & \cos t \end{pmatrix}.$

Это отображение, очевидно, удовлетворяет условию Липшица. Обозначим через $f(t,p) \doteq s(p,F(t))$ его опорную функцию, где $p \in \mathbb{R}^2$, $t \in \mathbb{R}^1$. Очевидно равенство f(t,p) = s(L(-t)p,A) и то, что f(t,p) удовлетворяет как условию Липшица по p при любом $t \in \mathbb{R}^1$, так и условию Липшица по t при любом $p \in \mathbb{R}^2$. В силу положительной однородности опорной функции достаточно рассмотреть $p \in \partial \overline{B_1(0)}$. Обозначим такие точки через $p = p(\varphi) \doteq (\cos \varphi, \sin \varphi)$, где $\varphi \in [0, 2\pi]$. В частности, получаем, что $p(\varphi) = L(\varphi)p_0$, где $p_0 \doteq (1,0)$. Поэтому справедливо равенство

$$f(t, p(\varphi)) = f(0, p(\varphi - t)) = s(p(\varphi - t), A). \tag{26}$$

Если при некотором $t_0 \in \mathbb{R}^1$ у функции $p \to f(t_0,p)$ существует производная в точке $p(\varphi_0)$, то в силу равенства (26) получаем, что эта производная является опорным множеством $A_{p(\varphi_0-t_0)} \doteq \{(x,y) \in \mathbb{R}^2 | \langle p(\varphi_0-t_0), (x,y) \rangle = s(p(\varphi_0-t_0),A)\}$ ко множеству A в направлении $p(\varphi_0-t_0)$, причем это множество обязано быть одноточечным. Для того, чтобы получить вторую смешанную производную по t от первой производной опорной функции по p в точке $(t_0,p(\varphi_0))$ необходимо, чтобы первая производная опорной функции по p существовала при всех $(t,p(\varphi_0))$, точнее, при всех t из некоторой окрестности точки t_0 . Но такой окрестности не существует, так как в любой окрестности точки t_0 , как показано в примере p0, среди множеств p0, найдутся неодноточечные опорные множества, и поэтому при таких p1 призводной от опорной функции p2 найдутся неодноточечные опорные множества, и поэтому при нашей опорной функции ее вторая смешанная производная по p1 и по p2 и по p3 и по p4 на существует ни в одной точке p4 на существует ни в одной точке p6 на существует ни в одной точке p7 на существует ни в одной точке p8 на существует ни в одной точке p9 на по p9 на существует ни в одной точке p9 на по p9 на помествует на

Работа выполнена при поддержке РФФИ (проект 10-01-00139a) и ФЦП «Научные и научнопедагогические кадры инновационной России».

Библиографический список

1. *Aubin J.-P.* Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions and differential inclusions // Advances in Math. Suppl. Studies. 1981. Vol. 7A. P. 160–272.

2. Половинкин Е. С. Теория многозначных отображений. М.: Изд-во МФТИ, 1983. 108 с. [Polovinkin E. S. The theory of multi-valued mappings. Moscow: Moscow Institute of Physics and Technology, 1983. 108 р.]

- 3. Половинкин Е. С., Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. М.: Физматлит, 2007. 440 с. [Polovinkin E. S., Balashov M. V. Elements of convex and strongly convex analysis. Moscow: Fizmatlit, 2007. 440 р.]
- 4. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973. 472 с. [Rockafellar R. T. Convex analysis. Princeton, New Jersey: Princeton university press, 1970. 472 р.] 5. Пшеничный Б. Н. Выпуклый анализ и экстремаль-

ые задачи. М.: Наука, 1980. 320 с. [*Pshenichny B. N.* Convex analysis and extremal problems. Moscow: Nauka, 1980. 320 р.]

6. *Aubin J.-P., Frankovska H.* Set-Valued Analisys. Boston; Basel; Berlin: Birkhäuser, 1990. 464 p.

7. *Aubin J.-P.* Lipschitz behavior of solutions to convex minimization problems // Math. of Oper. Res. 1984. Vol. 9. P. 87–111.

8. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1975. 496 с. [Kolmogorov A. N., Fomin S. V. Elements of the theory of functions and functional analysis. Moscow: Nauka, 1975. 496 р.]

УДК 517.927.25

РАЗЛОЖЕНИЕ ПО СОБСТВЕННЫМ ФУНКЦИЯМ КВАДРАТИЧНЫХ СИЛЬНО НЕРЕГУЛЯРНЫХ ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ ВТОРОГО ПОРЯДКА

В. С. Рыхлов

Саратовский государственный университет E-mail: RykhlovVS@info.sgu.ru

Рассматривается квадратичный сильно нерегулярный пучок обыкновенных дифференциальных операторов 2-го порядка с постоянными коэффициентами и с положительными корнями характеристического уравнения. Найдены суммы двукратных разложений в ряд по собственным функциям таких пучков и необходимые и достаточные условия сходимости указанных разложений к разлагаемой вектор-функции.

Ключевые слова: квадратичный пучок дифференциальных операторов, сильно нерегулярный пучок, двукратное разложение по собственным функциям.

Expansion in Eigenfunctions of Quadratic Strongly Irregular Pencils of Differential Operators of the Second Order

V. S. Rykhlov

We consider a quadratic strongly irregular pencil of 2-d order ordinary differential operators with constant coefficients and positive roots of the characteristic equation. Both the amounts of double expansions in a series in the derivative chains of such pencils and necessary and sufficient conditions for convergence of these expansions to the decomposed vector-valued function are found.

Key words: quadratic pencil of differential operators, strongly irregular pencil, two-fold expansion in the eigenfunctions.

1. ПОСТАНОВКА ЗАДАЧИ И КРАТКАЯ ИСТОРИЯ ВОПРОСА

Рассмотрим в пространстве $L_2[0,1]$ квадратичный пучок $L(\lambda)$ обыкновенных дифференциальных операторов второго порядка при $p_i, \alpha_{\nu i}, \beta_{\nu i} \in \mathbb{C}$:

$$\ell(y,\lambda) := y'' + p_1 \lambda y' + p_2 \lambda^2 y,\tag{1}$$

$$U_{\nu}(y,\lambda) := (\alpha_{\nu 1} y'(0) + \lambda \alpha_{\nu 2} y(0)) + (\beta_{\nu 1} y'(1) + \lambda \beta_{\nu 2} y(1)) = 0, \qquad \nu = 1, 2.$$
 (2)

Обозначим через ω_1, ω_2 корни характеристического многочлена (х.м.) пучка и пусть выполняется условие

$$0 < \omega_1 < \omega_2. \tag{3}$$

Функции $y_i(x,\lambda) = \exp(\lambda \omega_i x)$, i=1,2, образуют фундаментальную систему решений (ф.с.р.) уравнения $\ell(x,\lambda)=0$. Считаем далее при каждом $\nu=1,2$, что $\alpha_{\nu 1}\neq 0$ или $\beta_{\nu 1}\neq 0$. В остальных случаях рассуждения принципиально не отличаются.

Обозначим $v_{\nu j} = U_{\nu 0}(y_j, \lambda)/\lambda = \alpha_{\nu 1}\omega_j + \alpha_{\nu 2}, \ w_{\nu j} = e^{-\lambda \omega_j}U_{\nu 1}(y_j, \lambda)/\lambda = \beta_{\nu 1}\omega_j + \beta_{\nu 2}, \ V_j = (v_{1j}, v_{2j})^T, \ W_j = (w_{1j}, w_{2j})^T, \ \nu, j = 1, 2; \ a_{sk} = \det(W_s, W_k), \ a_{\bar{s}k} = \det(V_s, W_k), \ a_{s\bar{k}} = \det(V_s, V_k), \ a_{\bar{s}k} = \det(V_s, V_k), \ s, k = 1, 2.$

Характеристический определитель пучка $L(\lambda)$ тогда имеет вид

$$\Delta(\lambda) = \det(U_{\nu}(y_{j}, \lambda))_{\nu, j=1}^{2} = \lambda^{2} |V_{1} + e^{\lambda \omega_{1}} W_{1}; V_{2} + e^{\lambda \omega_{2}} W_{2}| =$$

$$= \lambda^{2} (a_{\bar{1}\bar{2}} + e^{\lambda \omega_{1}} a_{1\bar{2}} + e^{\lambda \omega_{2}} a_{\bar{1}2} + e^{\lambda(\omega_{1} + \omega_{2})} a_{12}) =: \lambda^{2} \Delta_{0}(\lambda).$$

© Рыхлов В. С., 2013