

Следствие 1. Пусть выполняются условия теоремы 1. Для того, чтобы имели место формулы при $\nu \to \infty$

$$-\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_0(x,\lambda;f) \, d\lambda = f_0(x) + o(1), \qquad -\frac{1}{2\pi i} \int_{\Gamma_{\nu}} v_1(x,\lambda;f) \, d\lambda = f_1(x) + o(1), \tag{23}$$

необходимо и достаточно, чтобы функции f_0, f_1 удовлетворяли системе уравнений:

$$\begin{cases} \left(e_2 \omega_2 f_0(\alpha_x) - e_1 \omega_1 f_0(\beta_x) + \omega_1 f_0(x) \right) - p_2 \left(e_2 F_1(\alpha_x) - e_1 F_1(\beta_x) + F_1(x) \right) = 0, \\ \left(e_2 \omega_1 f_1(\alpha_x) - e_1 \omega_2 f_1(\beta_x) + \omega_2 f_1(x) \right) - \left(e_2 f_0'(\alpha_x) - e_1 f_0'(\beta_x) + f_0'(x) \right) = 0. \end{cases}$$

Дифференцируя первое уравнение (ввиду нулевых начальных условиях получим эквивалентное уравнение) и анализируя полученную систему, без труда получим простое условие разложимости вектора $(f_0, f_1)^T$ по производным цепочкам пучка $L(\lambda)$.

Теорема 2. Пусть выполняются предположения теоремы 1 и $e_2=0$ (это эквивалентно условию $a_{2\bar{2}}=0$). Для того, чтобы имели место формулы (23), необходимо и достаточно, чтобы выполнялось соотношение $f_0'(x)=\omega_2 f_1(x)$ для всех $x\in[0,1]$.

Из полученных результатов видно, что когда корни х.м. лежат на одном луче, для разложимости функции в ряд по с.ф. пучка $L(\lambda)$ в с.н. случае так же, как и в случае оператора первого порядка, рассмотренного в [2], не требуется аналитичности разлагаемой функции.

Работа выполнена при финансовой поддержке РФФИ (проект 10-01-00270).

Библиографический список

- 1. Наймарк М. А. Линейные дифференциальные операторы. М.: Наука, 1969. [Naimark M. A. Linear Differential Operators. Parts I. New York: Ungar Publ. Co., 1967; Naimark M. A. Linear Differential Operators. Parts II. New York: Ungar Publ. Co., 1968.]
- 2. Гуревич А. П., Хромов А. П. Операторы дифференцирования первого и второго порядков со знакопеременной весовой функцией // Мат. заметки. 1994. Т. 56, вып. 1. С. 3–15. [Gurevich A. P., Khromov A. P. First and second order differentiation operators with weight functions of variable sign // Math. Notes. 1994. Vol. 56, iss.1. P. 653—661.]
- 3. *Хромов А. П.* Разложение по собственным функциям одной краевой задачи третьего порядка // Исследования по теории операторов. Уфа, 1988. С. 182–193. [*Khromov A. P.* Expansion in eigenfunctions a boundary value problem of the third order // Issledovaniya po teorii operatorov. Ufa, 1988. P. 182–193.]
- 4. *Хромов А. П.* Теоремы равносходимости для интегродифференциальных и интегральных операторов // Мат. сб. 1981. Т. 114(156), № 3. С. 378–405. [*Hromov A. P.* Equiconvergence theorems for integrodifferential and integral operators // Math. USSR Sb. 1982. Vol. 42, iss. 3. P. 331–355.]

УДК 517.53/54

СЧЕТНОСВЯЗНАЯ ОБЛАСТЬ НЕ ГОМЕОМОРФНА НЕСЧЕТНОСВЯЗНОЙ

В. В. Старков

Петрозаводский государственный университет E-mail: VstarV@list.ru

В 1923 году Керекьярто доказал, что счетносвязная область не гомеоморфна несчетносвязной. В этой заметке дано другое доказательство этого факта с использованием методов комплексного анализа.

Ключевые слова: гомеоморфизмы бесконечносвязных областей.

A Countably Connected Domain is not Homeomorphic to an Uncountably Connected Domain

V. V. Starkov

In 1923 Керекьярто proved, that a countably connected domain is not homeomorphic to an uncountaby connected domain. We give another proof of this statement.

Key words: homeomorphism of multy connected domains.

Под континуумом, как обычно, будем понимать связное замкнутое подмножество расширенной плоскости. Граничной компонентой области D называется каждый континуум $K \subset \partial D$, обладающий тем свойством, что любой континуум $K' \subset \partial D$, $K' \supset K$, совпадает с K.

Определение. Область D называется cчетносвязной, если ее граница ∂D является объединением счетного множества компонент. Если же ∂D невозможно представить в виде не более чем счетного множества попарно непересекающихся континуумов, то область D называется hесчетносвязной.

Следующий результат принадлежит Керекьярто [1] (см. также [2, гл. 4, II]), но здесь будет дано другое его доказательство с использованием методов комплексного анализа. Потребность в этом результате нередко возникает в разных задачах (см., например, [3]).

Теорема. Счетносвязная и несчетносвязная области в $\bar{\mathbb{C}}$ топологически не эквивалентны.

Доказательство. 1. Пусть D — счетносвязная область. По теореме Посселя–Гретша [4, гл. 5, § 2] существует биголоморфное отображение F области D на область Ω , представляющую собой расширенную плоскость $\bar{\mathbb{C}}$ с разрезами, параллельными вещественной оси (т. е. каждая компонента границы $\partial\Omega$ представляет собой отрезок, параллельный вещественной оси, или точку). Покажем, что Ω — счетносвязная область.

Обозначим $\mathcal I$ проекцию множества $\partial\Omega$ на мнимую ось. Покажем, что $\mathcal I$ не более чем счетно. Из открытости и связности Ω следует, что для любого $y\in\mathcal I$ на прямой $\{z:\operatorname{Im} z=y\}$ существует интервал $\gamma_y\subset\Omega$, оканчивающийся в граничной точке области Ω . Обозначим $\Gamma_y=F^{-1}(\gamma_y)\subset D$. Каждая из кривых Γ_y имеет предедьную точку из ∂D . Если $\mathcal I$ несчетно, то существует граничная компонента B области D, на которой несчетное множество кривых Γ_y имеют предельные точки. Рассмотрим две из них: Γ_{y_1} и $\Gamma_{y_2}, y_1 \neq y_2$. Выберем точки $a,b\in\Omega$, расположенные на прямой $\{z:\operatorname{Im} z=y_1\}$ по обе стороны интервала γ_{y_1} , и такие ε -окрестности U_a и U_b этих точек, что $U_a,U_b\subset\Omega$.

Рассмотрим открытый прямоугольник R_1 , ограниченный вертикальными прямыми, проходящими через точки a и b и горизонталями $\{z: {\rm Im}\, z=y_1-\varepsilon\}, \varepsilon<|y_1-y_2|,$ и $\{z: {\rm Im}\, z=y_1\}.$ Открытое множество $R_1 \cap \Omega$ распадается в объединение (не более чем счетное) областей B_i (см., например, [5, гл. 4, §4]): $R_1 \cap \Omega = \cup_j B_j, B_{j_1} \cap B_{j_2} = \emptyset$ при $j_1 \neq j_2$ (из дальнейшего будет ясно, что $R_1 \cap \Omega$ область). Каждая из областей B_i в качестве граничных компонент или их фрагментов может иметь лишь разрезы (или их части) области Ω или фрагменты ∂R_1 . Поэтому и внешняя граница области B_i может быть разбита в объединение горизонтальных отрезков и фрагментов вертикалей границы ∂R_1 . Пусть $\{z \in \mathbb{C} : \rho_i' < \operatorname{Im} z < \rho_i''\}$ — минимальная горизонтальная полоса, содержащая B_j . Если этой полосе, кроме области B_j , принадлежали бы точки другой области B_k , то континуум, являющийся фрагментом внешней границы области B_j , разделял бы в $R_1 \cap \{z \in \mathbb{C} : \rho_j' < \operatorname{Im} z < \rho_j''\}$ малые окрестности точек $a' = x' + iy' \in B_j$ и $a'' = x'' + iy' \in B_k$ в том смысле, что для любого вещественного η из малой окрестности нуля отрезок $[x'+i(y'+\eta),x''+i(y'+\eta)]$ имел бы непустое пересечение с этим фрагментом внешней границы области B_j . Но ни один из связных фрагментов ∂B_j этим свойством не обладает (отрезок $[x'+i(y'+\eta),x''+i(y'+\eta)]$ не может пересекать вертикального фрагмента ∂B_j , так как B_i и B_k из R_1). Следовательно, каждая область B_i лежит в полосе $\{z \in \mathbb{C} : \rho_i' < \operatorname{Im} z < \rho_I''\}$, причем для разных областей B_j и B_k $(\rho_j', \rho_j'') \cap (\rho_k', \rho_k'') = \emptyset$.

Соединим простой кривой $L_1\subset B_1$ точки $a_1\in U_a\cap B_1$ и $b_1\in U_b\cap B_1$. Заменяя в предыдущих рассуждениях прямоугольник R_1 на прямоугольник R_2 , ограниченный вертикальными прямыми, проходящими через a и b, и горизонталями $\{z: \operatorname{Im} z=y_1\}$ и $\{z: \operatorname{Im} z=y_1+\varepsilon\}$, придем к существованию простой кривой $L_2\subset R_2\cap \Omega$, соединяющей $a_2\in U_a$ и $b_2\in U_b$. Следовательно, существует простая замкнутая кривая $L\subset \Omega\cap \{z\in \mathbb{C}: |\operatorname{Im} z-y_1|<\varepsilon\}$, содержащая в своей внутренности интервал γ_{y_1} вместе с компонентой границы $\partial\Omega$, к которой он примыкает.

Обозначим через G_1 плоскую область, ограниченную кривой L, $G_2 = \mathbb{C} \setminus \bar{G}_1$. Тогда $\Gamma_{y_1} \subset F^{-1}(G_1 \cap \Omega)$, $\Gamma_{y_2} \subset F^{-1}(G_2 \cap \Omega)$. Поэтому предельные точки кривых Γ_{y_1} и Γ_{y_2} не могут принадлежать одной граничной компоненте B области D. Противоречие доказывает счетность множества \mathcal{I} .

2. Покажем теперь, что Ω — счетносвязная область. Если это не так, то существует $y_0 \in \mathcal{I}$, для которого на прямой $l = \{z \in \mathbb{C} : \operatorname{Im} z = y_0\}$ имеется несчетное множество граничных компонент области Ω . Для каждой из таких компонент существует своя последовательность точек $\{z_n\}_{n=1}^{\infty} \subset \Omega$, сходящаяся к некоторой точке этой компоненты. Тогда каждая последовательность $\zeta_n = F^{-1}(z_n) \in D, n \in \mathbb{N}$, имеет, по крайней мере, одну предельную точку на граничной компоненте области D. Из сделанного предположения о несчетносвязности области Ω вытекает, что таких различных последовательностей — $\{\zeta_n\}_{n=1}^{\infty}$ — несчетное множество. Поэтому существует компонента

Математика 27

 $B \subset \partial D$, которой принадлежат предельные точки несчетного множества построенных последовательностей $\{\zeta_n\}_{n=1}^{\infty}$. Рассмотрим две из них: $\{\zeta_n'\}_{n=1}^{\infty}$ и $\{\zeta_n''\}_{n=1}^{\infty}$.

Поскольку пределы последовательностей $z_n' = F(\zeta_n')$ и $z_n'' = F(\zeta_n'')$ принадлежат разным компонентам K' и K'' из $\partial\Omega$, лежащим на прямой l, то существует разделяющая их точка $a \in l \cap \Omega$. Теперь те же рассуждения, что и в первой части доказательства, позволяют построить простые замкнутые кривые $L' \subset \Omega$ и $L'' \subset \Omega$, ограничивающие области комплексной плоскости G_1' и G_1'' , $G_1'' \cap G_1'' = \emptyset$. Причем $K' \subset G_1'$, $K'' \subset G_1''$. Следовательно,

$$\{\zeta_n'\}_{n=1}^{\infty} \subset F^{-1}(G_1' \cap \Omega) \subset D, \qquad \{\zeta_n''\}_{n=1}^{\infty} \subset F^{-1}(G_1'' \cap \Omega) \subset D,$$

начиная с некоторого номера n. Поэтому последовательности $\{\zeta_n'\}_{n=1}^{\infty}$ и $\{\zeta_n''\}_{n=1}^{\infty}$ не могут иметь предельных точек на одной и той же граничной компоненте B области D. Противоречие.

Таким образом, Ω — счетносвязная область.

3. Пусть теперь D — несчетносвязная область. Опять, по теореме Посселя-Гретша, биголоморфно отобразим ее на расширенную плоскость с разрезами, параллельными вещественной оси; это отображение обозначим снова F и обозначим $\Omega = F(D) (\ni \infty)$. Покажем, что Ω — несчетносвязная область.

Предположим противное, т. е. $\partial\Omega=\cup_{j=1}^\infty K_j$, где K_j — различные граничные компоненты области Ω . Для каждой компоненты B_α границы области D (α пробегает некоторое множество мощности \mathbf{c}) построим последовательность $\{\zeta_n^{(\alpha)}\}_{n=1}^\infty\subset D$, сходящуюся к $\zeta^{(\alpha)}\in B_\alpha$. Последовательность $z_n^{(\alpha)}=F(\zeta_n^{(\alpha)}),\ n\in\mathbb{N}$, имеет предельную точку, по крайней мере, на одной компоненте границы области Ω . Из сделанного предположения счетносвязности Ω вытекает существование такой граничной компоненты $K\subset\partial\Omega$, на которой имеются предельные точки несчетного множества различных последовательностей $\{\zeta_n^{(\alpha)}\}_{n=1}^\infty$. Рассмотрим две из них: $\{\zeta_n'\}_{n=1}^\infty$ и $\{\zeta_n''\}_{n=1}^\infty$. Обозначим B' и B'' ($B'\neq B''$) граничные компоненты области D, которым принадлежат соответствующие пределы ζ' и ζ'' этих последовательностей, $\zeta'\in B'$, $\zeta''\in B''$. Выберем точки $a,b\in\Omega$, лежащие с K на одной горизонтальной прямой, но по разные стороны от K. Повторяя рассуждения из 1), построим замкнутую кривую $L_\varepsilon\subset\Omega$, лежащую в ε -окрестности компоненты K и содержащую K в своей внутренности.

Обозначим через G_{ε} ограниченную область комплексной плоскости с границей $\partial G_{\varepsilon} = L_{\varepsilon}$, тогда $\Phi_{\varepsilon} = F^{-1}(G_{\varepsilon} \cap \Omega)$ — область, ее замыкание $\bar{\Phi}_{\varepsilon}$ — континуум, $\zeta' \in \bar{\Phi}_{\varepsilon} \ni \zeta''$. В качестве ε возьмем убывающую последовательность $\varepsilon_n \to 0$. Тогда $\bar{\Phi}_{\varepsilon_n}$ — убывающая последовательность континуумов, следовательно [5,гл. 5, § 3], $\Phi = \mathop{ap}\limits_{n=1}^{\infty} \bar{\Phi}_{\varepsilon_n}$ — континуум, $\zeta' \in \Phi \ni \zeta''$. Поскольку при всех n множество $\bar{\Phi}_{\varepsilon_n}$ лежит в замыкании \bar{D} области D, то и $\Phi \subset \bar{D}$. Но $\Phi \cap D = \emptyset$, так как в противном случае для точки $z_0 \in D \cap \Phi$ ее образ

$$F(z_0) \in G_{\varepsilon_n} \cap \Omega \quad \forall n \in \mathbb{N},$$

что невозможно, если $\varepsilon_n < \rho(F(z_0, K))$. Следовательно, $\Phi \subset \partial D$. Но тогда, в силу связности Φ , ζ' и ζ'' принадлежат одной граничной компоненте области D, а значит, B' = B''. Противоречие.

Таким образом, Ω — несчетносвязна.

4. Пусть теперь D_1 — счетносвязная область, а D — несчетносвязная. Обозначим Ω биголоморфный образ области D_1 , полученный применением теоремы Посселя–Гретша. В 2) доказана счетносвязность Ω . Если D_1 и D топологически эквивалентны, то топологически эквивалентны области Ω и D.

Обозначим через $F_0:D\to\Omega$ соответствующий гомеоморфизм. Теперь повторим рассуждения п. 3), взяв в качестве биголоморфного отображения F — гомеоморфизм F_0 . Придем к противоречию с топологической эквивалентностью областей D_1 и D. Теорема доказана.

Работа выполнена при финансовой поддержке Программы стратегического развития ПетрГУ в рамках реализации комплекса мероприятий по развитию научной деятельности и при поддержке РФФИ (проект 11-01-00952-а).

28 Научный отдел

Библиографический список

- 1. Kerekjarto B. V. Vorlesungen über Topologie. Berlin : J. Springer, 1923. 270 p.
- 2. Стоилов С. Лекции о топологических принципах теории аналитических функций. М.: Наука, 1964. 228 с. [Stoilov S. Lectures on topological principles in the theory of analytic functions. Moscow: Nauka, 1964. 228 р.]
- 3. *Старков В. В.* Локально биголоморфные конечнолистные отображения ограниченных областей. // Сиб. мат. журн. 2011. Т. 52, № 1. С. 177–186. [*Starkov V. V.* Finitely valent locally biholomorphic mappings of bounded

domains // Siberian Math. J. 2011. Vol. 52, № 1. P. 139–146.]

- 4. Голузин Г. М. Геометрическая теория функций комплексного переменного. М.: Наука, 1966. 628 с. [Goluzin G. M. Geometric theory of Functions of a complex variable. Providence, R.I.: Amer. Math. Soc., 1969]
- 5. Александров П. С. Введение в теорию множеств и общую топологию. М. : Наука, 1977. 368 с. [Alexandrov P. C. Introduction to set theory and general topology. Moscow: Nauka, 1977. 368 р.]

УДК 517.518.82

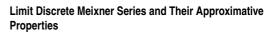
ПРЕДЕЛЬНЫЕ ДИСКРЕТНЫЕ РЯДЫ МЕЙКСНЕРА И ИХ АППРОКСИМАТИВНЫЕ СВОЙСТВА

Э. Ш. Султанов

Дагестанский научный центр РАН, Махачкала E-mail: emir.sultanov@gmail.com

В работе исследуется задача о приближении функций дискретными рядами по полиномам Мейкснера, ортогональным на равномерной сетке $\{0,1,\ldots\}$. Сконструированы новые ряды по этим полиномам, для которых в точке x=0 частичные суммы совпадают с приближаемой функцией f(x). Новые ряды образованы с помощью предельного перехода при $\alpha \to -1$ рядов Фурье $\sum_{k=0}^{\infty} f_k^{\alpha} m_k^{\alpha}(x)$ по полиномам Мейкснера.

Ключевые слова: полиномы Мейкснера, ряды Фурье, предельные ряды.



E. Sh. Sultanov

In this article the problem of function approximation by discrete series by Meixner polynomials orthogonal on uniform net $\{0,1,\ldots\}$ is investigated. We constructed new series by these polynomials for which partial sums coincide with input function f(x) in x=0. These new series were constructed by the passage to the limit of Fourier series $\sum_{k=0}^{\infty} f_k^{\alpha} m_k^{\alpha}(x)$ by Meixner polynomials when $\alpha \to -1$.

Key words: Meixner polynomials, Fourier series, limit series.

В задачах обработки сигналов часто встречается ситуация, когда требуется аппроксимировать дискретный сигнал, который с определенного момента является затухающим. При этом видится целесообразным осуществить его покусочную аппроксимацию с сохранением непрерывности восстановленного сигнала, а для этого необходимо, чтобы приближение в точке стыка совпадало с восстанавливаемой функцией. Для приближения затухающих сигналов наиболее подходящим является оператор частичных сумм Фурье по полиномам Мейкснера, однако он не обладает указанным свойством совпадения в точке стыка. Решая эту задачу, мы сконструировали оператор, основанный на новых так называемых предельных рядах по полиномам Мейкснера.

Для $0 < q < 1, \ \alpha > -1$ классические многочлены Мейкснера (J. Meixner) [1] можно определить следующим образом:

$$M_n^\alpha(x) = M_n^\alpha(x,q) = \binom{n+\alpha}{n} \sum_{k=0}^n \frac{(-n)_k(-x)_k}{(\alpha+1)_k k!} \left(1 - \frac{1}{q}\right)^k,$$

где $(a)_k = a(a+1)\dots(a+k-1)$. Они нормируются условием $M_n^{\alpha}(0,q) = \binom{n+\alpha}{n}$ и образуют ортогональную систему на сетке $\Omega = \{0,1,\dots\}$ с весом

$$\eta^{\alpha}(x) = \eta^{\alpha}(x,q) = (1-q)^{\alpha+1} q^x \frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)},$$

т. е.

$$\sum_{j=0}^{\infty} M_k^{\alpha}(j,q) M_l^{\alpha}(j,q) \eta^{\alpha}(j) = \delta_{kl} h_k^{\alpha,q},$$

где
$$h_k^{lpha,q}=inom{k+lpha}{k}q^{-k}\Gamma(lpha+1).$$

(С) Султанов Э. Ш., 2013