Cite this article as:

Kuchumov A. G., Solod'ko V. N., Gavrilov V. A., Samartsev V. A., Chaikina E. S. Investigation of surface roughness at micro-scale and mechanical response in the contemporary bio-polimer sutures by the nanoindentation . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 69-77. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-69-77


Language: 
Russian
Heading: 

Investigation of surface roughness at micro-scale and mechanical response in the contemporary bio-polimer sutures by the nanoindentation

Abstract: 

An investigation of properties of contemporary suture materials (surgical threads) is the state-of-art challenge in biomechanics. To improve an effectiveness of sutures application, an analysis of structure and elastic properties by the atomic force microscopy and scanning electron microscopy is necessary to be performed. As a result, the force-indentation depth dependences were plotted to obtain the Young's modulus of the thread at micro-scale taking into account influence of indentation area localization; moreover, the thread surface roughness was evaluated at an area of 5×5 and 10×10 micrometers. 

References

1. Semenov G. M., Petrishin V. L., Kovshova M. V.

Surgical suture. Мoscow, OCR Publ. House, 2001, 148 p.

2. Shishatskaya E. I., Volova T. G., Puzyr A. P., Mogilnaya

O. A., Efremov S. N. Tissue response to the implantation

of biodegradable polyhydroxyalkanoate sutures. J.

Mater. Sci. Mater. Med., 2004, vol. 15, pp. 719–728.

3. Fedorov A. E., Samartsev V. A., Gavrilov V. A.,

Vildeman V. E., Slovikov S. V. Experimental investigation

of the mechanical properties of the contemporary surgical

resorbable suture materials. Russian J. of Biomechanics,

2009, vol. 13, no. 4, pp. 78–84.

4. Shadrin V. V., Teplikov A. V. Handling characteristics

of surgical threads. Russian J. of Biomechanics, 2001.

vol. 5, no. 3, pp. 41–50.

5. Bezwada R. S., Jamiolkowski D. D., Lee In-Y.,

Agarwal V., Persivale J., Trenka-Benthin S., Emeta M.,

Suryadevara J., Yang A., Liu S. Monocryl suture :

a new ultra-pliable absorbable monofilament suture.

Biomaterials, 1995, vol. 16, pp. 1141–1148,

6. Taylor M. S., Daniels A. U., Andriano K. P., Heller J.

Six bioabsorbable polymers : in vitro acute toxicity of

accumulated degradation products. J. Appl. Biomater,

1994, vol. 5, pp. 151–157.

7. Tomihata K., Suzuki M., Oka T., Ikadab Y. A new

resorbable monofilament suture. Polym Degrad Stab.,

1998, vol. 59, pp. 13–18.

8. Altman G. H., Diaz F., Jakuba C., Calabro T.,

Horan R. L., Chen J., Lu H., Richmond J., Kaplan D. L.

Silk-based biomaterials. Biomaterials, 2003, vol. 24,

pp. 1141–1148,

9. Volenko A. V. , Germanovich Ch. S. , Gurova O. P. ,

Shvets R. A. Capromed — an antibacterial suture

material. Biomedical Engineering, 1994, vol. 28, no. 2,

pp. 98–100.

10. Amass W., Amass A., Tighe B. A review of

biodegradable polymers : uses, current developments

in the synthesis and characterization of biodegradable

polyesters, blends of biodegradable polymers and recent

advances in biodegradation studies. Polymer Int., 1998,

vol. 47, pp. 89–144.

11. Dao M., Chollacoop N., Vliet K. J. van,

Venkatesh T. A., Suresh S. Computational modeling of

the forward and reverse problems in instrumented sharp

indentation. Acta Mater., 2001, vol. 49, no. 19, pp. 3899–

3919,

12. Jagtap R. N., Ambre A. H. Overview literature on

atomic force microscopy (AFM) : basic and its important

applications for polymer characterization. Indian J. of

Engineering and Materials Science, 2006, vol. 13,

pp. 368–384.

13. Nishimura K. A., Mori R., Miyamoto W., Uchio Y.

New technique for small and secure knots using

slippery polyethylene sutures. Clinical Biomechanics,

2009, vol. 24, pp. 403–406.

14. Kuchumov A. G., Samartsev V. A., Chaykina E. S.,

Gavrilov V. A. Biomechanics of suture materials in the

abdominal surgery. Current problems of education and

science, 2012, vol. 6, no. 3, pp. 1–13.

15. Ladeveze P., Nouy A., Loiseau O. A multiscale

computational approach for contact problems. Comput.

Methods Appl. Mech. Engrg., 2002, vol. 191, pp. 4869–

4891.

16. Migliavacca F., Balossino R., Pennati G., Dubini

G., Hsia T. Y., Leval M. R. de, Bove E. L. Multiscale

modelling in bio-fluid dynamics: application to

reconstructive paediatric cardiac surgery. J. of Bio-

mechanics, 2006, vol. 39, pp. 1010–1020,

17. Chen X., Yang X., Pan J., Wang L., Xu K. Degradation

Behaviors of Bioabsorbable P3/4HB Monofilament Suture

in Vitro and in Vivo. J. of Biomedical Materials

Research. Pt. B: Applied Biomaterials., 2010, vol. 92,

pp. 447–455.

18. Nandula D., Chalivendra V., Calvert P. Sub-micron

scale mechanical properties of polypropylene fibers

exposed to ultra-violet and thermal degradation. Polymer

Degradation and Stability, 2006, vol. 12, pp. 2–14.

19. Deng M., Chen G., Burkley D., Zhou J.,

Jamiolkowski D. A study on in vitro degradation behavior

of a poly(glycolide-co- L-lactide) monofilament. Acta

Biomater., 2008, vol. 4, pp. 1382–1391,

Short text (in English): 
Full text: