Образец для цитирования:
Ковалёв В. А., Мурашкин Е. ., Радаев Ю. Н. Математическая теория связанных плоских гармонических термоупругих волн в микрополярных континуумах первого типа // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, вып. 1. С. 77-87. DOI: https://doi.org/10.18500/1816-9791-2014-14-1-77-87
Математическая теория связанных плоских гармонических термоупругих волн в микрополярных континуумах первого типа
В представляемой работе в рамках линейной теории обобщенной микрополярной термоупругости первого типа (GNI/CTE) с помощью связанной системы уравнений движения и теплопроводности выполнен анализ плоских гармонических связанных термоупругих волн перемещений, микровращений и температуры. Исследованы также закономерности распространения волновых поверхностей слабых разрывов перемещений, микровращений и температуры в термоупругом микрополярном континууме первого типа. Вычислены нормальные скорости распространения указанных волновых поверхностей. Получено и проанализировано с помощью пакета символьных вычислений Mathematica детерминантное уравнение для определения волновых чисел (постоянных распространения (PC)) плоских гармонических связанных термоупругих волн перемещений,микровращений и температуры. Факторизация полученного частотного полиномиального уравнения 14-й степени позволила свести его к биквадратному и бикубическому уравнениям относительно волновых чисел. Для волновых чисел поперечных и продольных волн получены алгебраические формы, содержащие многозначные комплексные квадратные и кубические радикалы.
1. Cosserat E. et F. Theorie des corps deformables. Paris : Librairie Scientifique A. Hermann et Fils, 1909. 226 p.
2. Green A. E., Naghdi P. M. On undamped heat waves in an elastic solid // J. Therm. Stress. 1992. Vol. 15. P. 253–264.
3. Green A. E., Naghdi P. M. Thermoelasticity without energy dissipation // J. Elasticity. 1993. Vol. 31. P. 189–208.