Математика

Об одном исключительном случае первой основной трехэлементной краевой задачи типа Карлемана для бианалитических функций в круге

В данной статье рассматривается невырожденная (не редуцируемая к двухэлементной) трехэлементная задача типа Карлемана для бианалитических функций в исключительном случае, т. е. когда один из коэффициентов краевого условия обращается в нуль в конечном числе точек контура. В качестве контура берется единичная окружность. Для этого случая строится алгоритм решения задачи, заключающийся в сведении краевых условий данной задачи к системе из четырех уравнений типа Фредгольма второго рода.

О геометрии трехмерных псевдоримановых однородных пространств. II

Одной из важных проблем геометрии является задача об установлении связей между кривизной и топологической структурой многообразия. В общем случае задача исследования многообразий различных типов является достаточно сложной. Поэтому естественно рассматривать данную задачу в более узком классе псевдоримановых многообразий, например в классе однородных псевдоримановых многообразий. Настоящая статья является продолжением одноименной работы (части 1).

О положительных решениях модельной системы нелинейных обыкновенных дифференциальных уравнений

В статье исследованы свойства положительных решений модельной системы двух нелинейных обыкновенных дифференциальных уравнений с переменными коэффициентами. Найдены новые условия на коэффициенты, при выполнении которых произвольное решение (x(t), y(t)) с положительными начальными значениями x(0) и y(0) положительно, нелокально продолжимо и ограничено при t > 0. В этих условиях исследован вопрос о глобальной устойчивости положительных решений методом построения направляющей функции и методом предельных уравнений.

Симметризация в чистых и ниль-чистых кольцах

Мы вводим и исследуем D-чистые и D-ниль-чистые кольца, а также некоторые другие тесно связанные симметричные версии чистоты и ниль-чистоты. Дана исчерпывающая структурная характеристика для этих симметрично чистых и симметрично ниль-чистых колец в терминах радикала Джекобсона и его частного. Доказано, что сильно чистые (соответственно, сильно ниль-чистые) кольца всегда D-чистые (соответственно, D нильчистые). Наши результаты подтверждают недавние публикации в Вестн. Иркутск. гос. ун-та, Матем. (2019) и Turk. J. Math. (2019).

Внешняя оценка компакта лебеговым множеством выпуклой функции

Рассматривается конечномерная задача о вложении заданного компакта D ⊂ R p в нижнее лебегово множество G(α) = {y ∈ R p: f(y) 6 α} выпуклой функции f(·) с наименьшим значением α за счет смещения D. Ее математическая формализация приводит к задаче минимизации функции φ(x) = max y∈D f(y − x) на R p  Исследованы свойства функции φ(x), получены необходимые и достаточные условия и условия единственности решения задачи. В качестве базового для приложений выделен случай, когда f(·) — калибровочная функция Минковского некоторого выпуклого тела M.

Восстановление сингулярных дифференциальных пучков с точками поворота

Рассматриваются пучки дифференциальных уравнений 2-го порядка на полуоси с точками поворота. Устанавливаются свойства спектра и исследуется обратная спектральная задача восстановления коэффициентов пучка по спектральным данным.

Продолжение упорядоченности на множество вероятностных мер

Предложен общий метод для продолжения упорядоченности на множество вероятностных мер. Он основан на наличии связи Галуа между всеми продолжениями упорядоченности на множество вероятностных мер и подмножествами изотонных отображений в числовую nрямую. Продолжение порядка, которое определено множеством всех изотонных отображений, названо каноническим. Для канонического продолжения дано эффективное описание и найдены вероятностные меры, которые являются максимальными в выпуклых многогранниках вероятностных мер. Указаны некоторые приложения рассмотренных методов для задач принятия решений.

О регулярности самосопряженных краевых условий

В статье дается подробное изложение положительного решения гипотезы Камке о регулярности самосопряженных краевых условий и устанавливается аналог теоремы Жордана–Дирихле о равномерной сходимости разложений в тригонометрические ряды Фурье для случая разложений по собственным функциям одного класса самосопряженных интегральных операторов.

Об оптимальном выборе интерполяционного сплайна по треугольной сетке

В статье строится Эрмитов сплайн на треугольнике, для которого оценка погрешности его производной в направлении любой стороны треугольника обратно пропорциональна длине этой стороны.

Принцип локализации на классе функций, интегрируемых по Риману, для процессов Лагранжа –Штурма – Лиувилля

Будем говорить, что для интерполяционного процесса Лагранжа – Штурма –Лиувилля L SL n (f, x) на классе функций F в точке x0 ∈ [0, π] имеет место принцип локализации, если из того, что для любых двух функций f и g, принадлежащих F, таких, что в некоторой окрестности Oδ(x0), δ > 0 выполняется условие f(x) = g(x), следует соотношение limn→∞ L SL n (f, x0) − L SL n (g, x0) = 0.

Страницы