Образец для цитирования:
Товстик П. Е. НЕКЛАССИЧЕСКИЕ МОДЕЛИ БАЛОК, ПЛАСТИН И ОБОЛОЧЕК // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2008. Т. 8, вып. 3. С. 72-85. DOI: https://doi.org/10.18500/1816-9791-2008-8-3-72-85
НЕКЛАССИЧЕСКИЕ МОДЕЛИ БАЛОК, ПЛАСТИН И ОБОЛОЧЕК
Для задач статики, свободных колебаний и устойчивости балок, пластин и оболочек модель Тимошенко – Рейсснера, учитывающая сдвиг, сравнивается с классической моделью Кирхгофа –Лява и с трехмерной теорией упругости. На ряде тестовых примеров установлен формальный асимптотический характер одномерных и двухмерных моделей и найдена область их применимости. Для пластин и оболочек, лежащих на трансверсально изотропном упругом основании обсуждаются модели Кирхгофа– Лява и Тимошенко – Рейсснера. Используется асимптотический метод интегрирования, основанный на малости толщины оболочки по сравнению с длиной волны на поверхности. Особое внимание обращается на построение форм колебаний и потери устойчивости, локализованных вблизи свободной поверхности.
1. Доннелл Л.Г. Балки, пластины и оболочки. М.: Наука, 1982. 568 с.
2. Гольденвейзер А.Л. Теория упругих тонких оболочек. М.: Наука, 1976. 512 с.
3. Агаловян Л.А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука, 1997. 414 с.
4. Назаров С.А. Асимптотический анализ тонких пластин и стержней. Новосибирск: Научная книга, 2002.408 с.
5. Товстик П.Е. Об асимптотическом характере приближенных моделей балок, пластин и оболочек //Вестн. С.-Петерб. ун-та. Сер. 1. 2007. No 3. С. 49–54.
6 Биргер И.А., Пановко Я.Г. Прочность. Устойчивость.Колебания: В 3-х т. / Под ред. Я.Г. Пановко. М.: Машиностроение, 1968. Т.3. 568 с.
7. Tovstik P.E., Tovstik T.P. On the 2D models of plates and shells including the shear // ZAMM. 2007. V. 87, No 2. P. 160–171.
8. Григолюк Э.И., Каюанов В.В. Устойчивость оболочек М.: Наука, 1978. 360 с.
9. Товстик П.Е. Устойчивость тонких оболочек. М.: Наука, 1995. 320 с.
10. Морозов Н.Ф., Семенов Б.Н., Товстик П.Е. Континуальные и дискретные модели в задаче устойчивости трехслойной нанопластины // Теор. и прикл. механика. Минск, 2005. Вып. 19. С. 37–41.
11. Родионова В.А., Титаев Б.Ф., Черных К.Ф. Прикладная теория анизотропных пластин и оболочек. СПб.: Изд-во С.-Петерб. ун-та, 1996. 280 с.
12. Ляв А. Математическая теория упругости. М.; Л.: ОНТИ, 1935. 674 с.
13. Сьярле Ф. Математическая теория упругости. М.: Мир, 1992. 472 с.
14. Ишлинский А.Ю. Об одном предельном переходе в теории устойчивости упругих прямоугольных пластин.// Докл. АН СССР. 1954. Т. 95, No 3. С. 477–479.
15. Баничук Н.В., Ишлинский А.Ю. О некоторых особенностях задач устойчивости и колебаний прямоугольных пластин // ПММ. 1995. Т. 59, No 4. С. 620– 625.
16. Кильчевский Н.А., Никулинская С.В. Об осесимметричной потере устойчивости круговой цилиндрической оболочки // Прикл. мех. 1965. Т. 1, No 11. С. 1–6.
17. Ершова З.Г. Устойчивость цилиндрической панели со слабо закрепленными прямолинейными краями // Вестн. С.-Петерб. ун-та. Сер. 1. 1993. No 3. С. 93–97.
18. Морозов Н.Ф., Паукшто М.В., Товстик П.Е. Устойчивость поверхностного слоя при термонагружении // МТТ. 1998. No 1. С. 130–139.
19. Ильгамов М.А., Иванов В.А., Гулин Б.В. Прочность, устойчивость и динамика оболочек с упругим заполнителем. М.: Наука. 1978. 332 с.
20. Товстик П.Е. Реакция предварительно напряженного ортотропного основания // Вестн. С.-Петерб. унта. Сер. 1. 2006. No 4. 388 с.
21. Товстик П.Е. Локальная устойчивость пластин и пологих оболочек на упругом основании // Изв. РАН. МТТ. 2005. Вып. 1. С. 147–160.
22. Работнов Ю.Н. Локальная устойчивость оболочек // Докл. АН СССР. 1946. Т. 52, No 2. С. 111–112.
23. Ширшов В.П. Локальная устойчивость оболочек // Тр. 2 Всесоюзн. конф. по теории оболочек и пластин. Киев, 1962. С. 314–317.
24. Болотин В.В. Краевой эффект при колебаниях упругих оболочек // ПMM. 1960. Т. 24, Вып. 5.