анизотропная пластинка

Изгиб многосвязных анизотропных плит с криволинейными отверстиями

Предложен приближенный метод определения напряженного состояния тонких плит с криволинейными отверстиями, заключающийся в использовании комплексных потенциалов теории изгиба анизотропных плит, аппроксимации контуров отверстий дугами эллипсов и берегами прямолинейных разрезов, конформных отображений, в представлении комплексных потенциалов рядами Лорана и определении неизвестных коэффициентов рядов обобщенным методом наименьших квадратов. Изотропные плиты рассматриваются как частный случай анизотропных плит.

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ В ЗАДАЧАХ ИЗГИБА ТОНКОЙ АНИЗОТРОПНОЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНКИ

В рамках гипотез Кирхгофа рассматривается задача статического поперечного изгиба тонкой прямоугольной пластинки из анизотропного материала, у которого в каждой точке имеется одна плоскость упругой симметрии, параллельная срединной плоскости пластинки. Предполагается, что вид граничных условий вдоль каждой из сторон контура не меняется. Двумерная краевая задача для определения прогиба модифицированным методом сплайн-коллокации сводится к краевой задаче для системы обыкновенных дифференциальных уравнений, которая решается численно.