изоморфизм

Построение минимальных рёберных расширений графа без проверки на изоморфизм

В 1993 г. Frank Harary и John P. Hayes предложили основанную на графах модель для исследования отказов связей элементов дискретных систем. Технической системе сопоставляется граф. Элементам системы соответствуют вершины графа, а связям между элементами — рёбра или дуги графа. Под отказом связи между элементами системы понимается удаление из графа системы соответствующего

Об определяемости универсальных графических автоматов своими полугруппами входных сигналов

Универсальный графический автомат Atm(G, G′ ) — это универсально притягивающий объект в категории автоматов, у которых множество состояний наделено структурой графа G и множество выходных сигналов — структурой графа G′ , сохраняющимися функциями переходов и выходов автоматов. Полугруппа входных сигналов такого автомата имеет вид S(G, G′ ) = End G × Hom(G, G′ ). Она может рассматриваться как производная алгебраическая система математического объекта Atm(G, G′ ), которая содержит полезную информацию об исходном объекте.

Построение всех неизоморфных минимальных вершинных расширений графа методом канонических представителей

В 1976 г. John P. Hayes предложил основанную на графах модель для исследования отказоустойчивости дискретных систем. Технической системе сопоставляется граф. Элементам системы соответствуют вершины графа, а связям между элементами — рёбра или дуги графа. Под отказом элемента системы понимается удаление из графа системы соответствующей вершины вместе со всеми её рёбрами. Формализацией отказоустойчивой реализации системы является расширение графа. Граф G* называется вершинным k-расширением графа G, если после удаления любых k вершин из графа G* граф G вкладывается в получившийся граф.