минимальное реберное расширение

О НИЖНЕЙ ОЦЕНКЕ ЧИСЛА РЕБЕР МИНИМАЛЬНОГО РЕБЕРНОГО 1-РАСШИРЕНИЯ СВЕРХСТРОЙНОГО ДЕРЕВА

Граф G∗ называется реберным 1-расширением графа G, если граф G можно вложить в каждый граф, получающийся из графа G∗ , удалением любого его ребра. Реберное 1-расширение G∗ графа G называется минимальным, если графы G и G∗ имеют одинаковое число вершин, а среди всех реберных 1-расширений графа G с тем же числом вершин граф G∗ имеет минимальное число ребер. Дерево называется сверхстройным, если только одна его вершина имеет степень больше двух.