многообразие алгебр

О тождествах специального вида в алгебрах Пуассона

В работе рассматриваются так называемые customary и extended customary тождества в алгебрах Пуассона. Показано, что последовательность коразмерностей {rn(V )}n¸1 любого extended customary пространства многообразия алгебр Пуассона V над произвольным полем либо ограничена полиномом, либо не ниже показательной функции с основанием степени, равной 2. При этом если данная последовательность ограничена полиномом, то найдется такой многочлен R(x) с рациональными коэффициентами, что rn(V ) = R(n) для всех достаточно больших n.

Новые свойства многообразий алгебр Лейбница

В работе представлены два новых результата, касающиеся многообразий алгебр Лейбница над полем нулевой характеристики. Доказано достаточное условие конечности кодлины многообразия алгебр Лейбница. Найден базис тождеств и базис полилинейной части многообразия eV3.