мультипликаторы

Λ-суммируемость и мультипликаторы классов Гельдера рядов Фурье по системам характеров

Пусть G –- группа Виленкина ограниченного типа. В данной работе получены необходимые и достаточные условия равномерной Λ-суммируемости всех рядов Фурье f ∈ C(G) и критерий Λ-суммируемости в L 1 (G) всех рядов Фурье f ∈ L 1 (G). Также получено обобщение некоторых результатов Т. Квека и Л. Япа на случай общего модуля непрерывности.

О РАВНОМЕРНОЙ СХОДИМОСТИ ПРЕОБРАЗОВАННЫХ РЯДОВ ФУРЬЕ ПО МУЛЬТИПЛИКАТИВНЫМ СИСТЕМАМ

Получены необходимые и достаточные условия равномерной Λ-суммируемости рядов Фурье–Виленкина функций из пространств Орлича LΦ[0,1 )и L1[0,1).Даны некоторые следствия для матриц с обобщенно-монотонными коэффициентами.
 

Об L 1 -сходимости рядов по мультипликативным системам

В статье устанавливаются два аналога тригонометрических результатов Гарретта – Станоевича для мультипликативных систем {χn} ∞n=0 ограниченного типа. Во-первых, модифицированные частные суммы ряда P∞ k=0 akχk с коэффициентами ограниченной вариации сходятся в L1 [0, 1) к сумме ряда тогда и только тогда, когда для любого ε > 0 существует δ > 0, такое что Z δ 0 ¯ ¯ ¯ ¯ ¯ X∞ k=n (ak − ak+1)Dk+1(x) ¯ ¯ ¯ ¯ ¯ dx < ε, n ∈ Z+, где Dk+1(x) = Pk i=0 χi(x).