Найдены достаточные условия (условия типа Жордана–Дирихле) разложения функции f(x) в равномерно сходящийся ряд по собственным и присоединенным функциям интегрального оператора, ядро которого терпит скачки на сторонах квадрата, вписанного в единичный квадрат. Как известно, для такого разложения необходимо, чтобы f(x) была непрерывна и принадлежала замыканию области значений интегрального оператора. Оказывается, если f(x) к тому жефункция ограниченной вариации, эти условия являются и достаточными.