Рассмотрена задача о конструировании полиномов sα r,n(x), порожденных полиномами Шарлье sαn (x) и ортонормированных относительно скалярного произведения типа Соболева видаhf, gi =r−1Pk=0kf(0)∆kg(0) +∞Pj=0∆rf(j)∆rg(j)ρ(j), где ρ(x) = αxe−α/Γ(x + 1). Показано, что система полиномов sα r,n (x), порожденная полиномами Шарлье, полна в гильбертовом пространстве Wrlρ, состоящем из дискретных функций, заданных на сетке Ω = {0, 1, . . .}, в котором введено скалярное произведение hf, gi. Найдена явная формула вида sαr,k+r(x) =kPl=0brlx[l+r], в которой x[m]= x(x − 1) . . . (x − m + 1).