спектральный параметр

ОЦЕНИВАНИЕ НОРМ ОПЕРАТОРА В ЗАДАЧАХ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ ДЛЯ УРАВНЕНИЙ С РАЗРЫВНЫМИ ОПЕРАТОРАМИ

Рассматривается проблема существования решений задач со спектральным параметром для уравнений с разрывными операторами. Получены оценки норм оператора для исследуемых задач. В качестве приложения рассмотрена задача Дирихле для уравнения эллиптического типа высокого порядка с разрывной нелинейностью.

Многоточечные дифференциальные операторы: «расщепление» кратных в главном собственных значений

В статье изучается краевая задача для дифференциального оператора восьмого порядка с суммируемым потенциалом. Граничные условия краевой задачи являются многоточечными. Выведено интегральное уравнение для решений дифференциального уравнения, задающего изучаемый дифференциальный оператор. Получены асимптотические формулы и оценки для решений соответствующего дифференциального уравнения при больших значениях спектрального параметра. Изучая граничные условия, выведено уравнение на собственные значения в виде определителя четвёртого порядка.