Т-неприводимое расширение

Т-неприводимые расширения для сверхстройных деревьев

Рассматривается один из способов построения оптимального расширения графа — Т-неприводимое расширение (ТНР). До сих пор остается нерешенной следующая задача: построить одно из ТНР для произвольного сверхстройного дерева. Данная задача была решена С. Г. Курносовой для подкласса сверхстройных деревьев –- пальм. Для несложных сверхстройных деревьев данная задача была решена М. Б. Абросимовым. Приводится контрпример для схемы из статьи Харари и Хурума «One node fault tolerance for caterpillars and starlike trees», которая описывает построение одного ТНР для произвольного сверхстройного дерева.

Т-неприводимое расширение для объединения цепей и циклов

Расширением n-вершинного графа G называется граф H с n+1 вершинами такой, что граф G вкладывается в каждый максимальный подграф графа H. Тривиальное расширение графа G – соединение графа G с одноэлементным графом (т.е. к графу G добавляется вершина, которая соединяется ребром с каждой вершиной графа G). Т-неприводимым расширением графа G называется расширение графа G, получаемое из тривиального расширения данного графа удалением максимально возможного набора добавленных при построении тривиального расширения ребер.