упорядоченное множество

Многоугольные графы как упорядоченные множества: критерий шпернеровости

Конечное упорядоченное множество называется шпернеровым, если среди его максимальных по длине антицепей хотя бы одна составлена из элементов одинаковой высоты. Под многоугольным графом понимается бесконтурный граф, полученный из цикла путем некоторой ориентации его ребер. В многоугольном графе отношение достижимости вершин является отношением порядка. Таким образом, многоугольный граф можно рассматривать как упорядоченное множество. Найдены необходимые и достаточные условия шпернеровости таких упорядоченных множеств.

Упорядоченное множество связных частей многоугольного графа

 Под многоугольным графом понимается ориентированный граф, полученный из цикла путем некоторой ориентации его ребер. Множество абстрактных (т.е. рассматриваемых с точностью до изоморфизма) связных частей многоугольного графа упорядочивается отношением вложимости графов. Получено описание многоугольных графов, для которых это упорядоченное множество является решеткой.