вейвлеты

Необходимое и достаточное условие ортогональной масштабирующей функции на группах Виленкина

Существуют несколько подходов к задаче построения ортогонального кратномасштабного анализа на группах Виленкина, но все они сводятся к поиску так называемой масштабирующей функции. В 2005 г. Ю. А. Фарков использовал так называемые «блокированные» множества, чтобы строить все возможные масштабирующие функции с компактным носителем и ограниченной частотной полосой для каждого набора неких параметров, его условия оказались необходимыми и достаточными. С. Ф. Лукомский, Ю. С. Крусс и Г. С.

О применении вейвлетов к цифровой обработке сигналов

Дискретное вейвлет-преобразование, ассоциированное с функциями Уолша, определено Лэнгом (W. C. Lang) в 1998 г. В статье излагаются применения преобразования Лэнга и некоторых его модификаций для анализа финансовых временных рядов и для сжатия фрактальных данных. Показано, что для обработки некоторых сигналов изучаемые дискретные вейвлет-преобразования имеют преимущества по сравнению с дискретными преобразованиями Хаара, Добеши и методом зонного кодирования.