Образец для цитирования:
Бурлуцкая М. Ш., Хромов А. П. ОБ ОДНОЙ ТЕОРЕМЕ РАВНОСХОДИМОСТИ НА ВСЕМ ОТРЕЗКЕ ДЛЯ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2009. Т. 9, вып. 4. С. 3-10. DOI: https://doi.org/10.18500/1816-9791-2009-9-4-1-3-10
ОБ ОДНОЙ ТЕОРЕМЕ РАВНОСХОДИМОСТИ НА ВСЕМ ОТРЕЗКЕ ДЛЯ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ
В работе установлена равносходимость на всем отрезке рядов Фурье по собственным и присоединенным функциям функционально-дифференциального оператора с инволюцией, содержащего потенциалы, и простейшего функционально-дифференциального оператора.
1. Stone M.H. A comparison of the series of Fourier and Birkhoff // Trans. Amer. Math. Soc. 1926. Vol. 28, № 4. P. 695–761.
2. Бурлуцкая М.Ш., Курдюмов В.П., Луконина А.С., Хромов А.П. Функционально-дифференциальный оператор с инволюцией // Докл. РАН. 2007. Т. 414, № 4. С. 443–446.
3. Бурлуцкая М.Ш., Хромов А.П. О равносходимости разложений по собственным функциям функционально-дифференциального оператора первого порядка на
графе из двух ребер, содержащем цикл // Диф. уравнения. 2007. Т. 43, № 12. С. 1597–1605.
4. Корнев В.В., Хромов А.П. О равносходимости разложений по собственным функциям интегральных операторов с ядрами, допускающими разрывы производных на диагоналях // Мат. сборник. 2001. Т. 192, № 10. С. 33–50.
5. Хромов А.П. Интегральные операторы с ядрами, разрывными на ломаных линиях // Мат. сборник. 2006. Т. 197, № 11. С. 115–142.