Образец для цитирования:

Новиков В. В. Исправление функций и интерполяция Лагранжа в узлах, близких к узлам Лежандра // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2017. Т. 17, вып. 4. С. 394-401. DOI: https://doi.org/10.18500/1816-9791-2017-17-4-394-401


Язык публикации: 
русский
Рубрика: 
УДК: 
517.51

Исправление функций и интерполяция Лагранжа в узлах, близких к узлам Лежандра

Аннотация: 

Известно, что интерполяционный процесс Лагранжа непрерывной функции с узлами в нулях многочленов Чебышева может расходиться всюду  (с произвольными узлами - почти всюду) подобно ряду Фурье суммируемой функции. В то же время известно, что любую измеримую (конечную п.в.) функцию можно исправить на множестве сколь угодно малой меры так, что ее ряд Фурье станет равномерно сходящимся (так называемое усиленное C-свойство). Возникает вопрос, не обладает ли класс непрерывных функций подобным свойством по отношению к интерполяционному процессу по той или иной матрице узлов? В настоящей работе показано, что существует матрица узлов интерполирования Mγ, как угодно близкая к матрице узлов Лежандра такая, что после исправления (с сохранением непрерывности) функции f ∈ C[−1,1] на множестве как угодно малой меры, интерполяционный процесс с узлами Mγ будет сходится к исправленной функции равномерно на [a,b] ∈ (−1,1).

Библиографический список

1. Grünwald G. Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Stetiger Funktionen // Ann. Math. 1936. Vol. 37. P. 908–918.

2. Marcinkiewicz J. Sur la divergence des polynomes d’interpolation // Acta Litt. Sci. Szeged. 1936/37. Vol. 8. P. 131–135.

3. Erd ˝ os P., Vertesi P. On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes // Acta. Math. Acad. Sci. Hungar. 1980. Vol. 36, iss. 1–2. P. 71–89.

4. Menchoff D. Sur les seéries de Fourier des fonctions continues // Матем. сб. 1940. Т. 8(50), № 3. С. 493–518.

5. Бари Н. К. Тригонометрические ряды. М. : Физматлит, 1961. 936 с.

6. Новиков В. В. Интерполяция типа Лагранжа–Якоби и аналог усиленного C-свойства // Математика. Механика : сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2007. Вып. 9. С. 66–68.

7. Неваи Г. П. Замечания об интерполировании // Acta Math. Acad. Sci. Hungar. 1974. Vol. 25, iss. 1–2. P. 123–144.

8. Новиков В. В. Критерий равномерной сходимости интерполяционного процесса Лагранжа–Якоби // Матем. заметки. 2006. Т. 79, № 2. C. 254–266. DOI: https://doi.org/10.18500/1816-9791-2015-15-4-418-422.

9. Привалов А. А. Критерий равномерной сходимости интерполяционных процессов Лагранжа // Изв. вузов. Матем. 1986. № 5. C. 49–59.

10. Сеге Г. Ортогональные многочлены. М. : Физматлит, 1962. 500 с.

Краткое содержание (на английском языке): 
Полный текст в формате PDF: