Cite this article as:
Likhacheva T. V. Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 3, pp. 287-294. DOI: https://doi.org/10.18500/1816-9791-2014-14-3-287-294
Language:
Russian
Heading:
UDC:
517.51
Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series
Abstract:
In this paper some summation methods are applied to Fourier-Vilenkin series in so called symmetric spaces. These methods use triangular matrix with sums in rows tending to zero and with some conditions on difference of coefficients. The triginometric counterpart of our results are due to M. L. Mittal, B. E. Rhoades, A. Guven, etc.
Key words:
References
1. Golubov B., Efimov A., Skvortsov V. Walsh series and transforms. Dodrecht; Boston; London, Kluwer Academic Publishers, 1991, 368 p. (Rus. ed. : Golubov B. I., Efimov A. V., Skvortsov V. A. Riady i preobrazovaniia Uolsha. Teoriia i primeneniia. Moscow, Nauka, 1987, 544 p.)
2. Krein S., Petunin J., Semenov E. Interpolation of linear operators. Translations Math. Monographs, vol. 55, Providene, R. I., Amer. Math. Soc., 1992. (Rus. ed. : Krein S. G., Petunin Iu. I, Semenov E. M. Interpoliatsiia lineinykh operatorov. Moskow, Nauka, 1987, 400 p.)
3. Volosivets S. S. On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces. Analysis Math, 2009, vol. 35, no. 2, pp. 131–148.
4. Mittal M. L., Rhoades B. E., Mishra V. N., Singh V. Using infinite matrix to approximate functions of class Lip(®, p) using trigonometric polynomials. J. Math. Anal. Appl., 2007, vol. 326, no. 1, pp. 667–676.
5. Guven A. Trigonometric approximation in reflexive Orlicz spaces. Anal. Theory Appl., 2011, vol. 27, no. 2, pp. 125–137.
6. Iofina T. V., Volosivets S. S. On the degree of approximation by means of Fourier –Vilenkin series in Holder and Lp norm. East J. Approximations, 2009, vol. 15. no. 2. pp. 143–158.
7. Leindler L. On the degree of approximation of continuous functions. Acta Math. Hungar., 2004, vol. 104, pp. 105–113.
8. Bari N. K., Stechkin S. B. Nailuchshie priblizheniia i differentsial’nye svoistva dvukh sopriazhennykh funktsii. [Best approximations and differential properties of two conjugate functions]. Trudy Mosk. mat. obshchestva, 1956, vol. 5, pp. 488–522 (in Russian).
9. Lindenstrauss J., Tzafriri L. Classical Banach spaces II. Berlin, Springer, 1973, 243 p.
10. Schipp F. On Lp-norm convergence of series with respect to product systems. Anal. Math., 1976, vol. 2, pp. 49–64.
11. Simon P. Verallgemeinerte Walsch – Fourierreihen. Acta Math. Hungar., 1976, vol. 27, no. 3–4, pp. 329–341.
12. Hardy G. H. Divergent Series. New York, Oxford Univ. Press, 1949, 395 p. (Rus. ed. : Hardy G. Raskhodiashchiesia riady. Moscow, Izd-vo inostr. literatury, 1951, 505 p.)
13. Zelin H. The derivatives and integrals of fractional order in Walsh-Fourier analysis with application to approximation theory. J. Approx. Theory., 1983, vol 39, no. 3, pp. 261–273.
14. Fridli S. On the rate of convergence of Cesaro means of Walsh – Fourier series. J. Approx. Theory., 1994, vol. 76, no. 1, pp. 31–53.
Full text:
76