Cite this article as:

Snigerev B. A., Tazyukov F. K. Double Layer of Polymer Melts in Channels of Dies . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 3, pp. 349-354. DOI: https://doi.org/10.18500/1816-9791-2014-14-3-349-354


Language: 
Russian
Heading: 
UDC: 
532.517.2:534.2

Double Layer of Polymer Melts in Channels of Dies

Abstract: 

Numerical simulation of double-layer nonlinear viscous flow in channels of dies was performed. The fluid motion is described by equations conservation of mass and momentum, supplemented by the rheological equation of state of nonlinear viscous fluid on the Carreau model. The technique of numerical solve the problem based on the finite element method is described. Results the field of velocities, pressure, stresses, position the interface boundary of two-layer flow depending on rheological properties of liquid and flow regimes are presented.

References
1. Yih C. S. Instability due to viscosity stratification. J. Fluid Mech., 1967, vol. 27, pp. 337–352.
2. Jankov V. I., Glot I. O., Trufanova N. M.,Shakirov N. V. Techenie polimerov v otverstijah fil’er. Teorija, raschet, praktika [For polymers in the holes of nozzles. Theory, computation practice]. Moscow, Izhevsk, Reguljarnaja i haoticheskaja dinamika, 2010, 368 p. (in Russian).
3. Han Ch. D. Reologija v processah pererabotki polimerov [Rheology in the plastics processing industry]. Moscow, Chemistry, 1979, 366 p. (in Russian).
4. Volodin V. P. Jekstruzija profil’nyh izdelij iz termoplastov [Extrusion profile products from thermoplastic materials]. St. Petersburg, Profession, 2005, 480 p. (in Russian).
5. Bird R. B., Armstrong R. C., Hasager O. Dynamics of Polymeric liquids. Vol. 1. Fluid Mechanics. New York, John Wiley ans Sons, 1987, 443 p.
6. Shikhmurzaev Y. D. Capillary Flows with Forming Interface. New York, Chapman and Hall, 2008, 443 p.
7. Connor J., Brebbia C. Finite Element Techniques for Fluid Flow. London, Newnes-Butterworths, 1976.
8. Snigerev B. A., Tazyukov F. Kh. The feature of nonisothermal viscoelastic flows around sphere at obstruction condition. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2011, vol. 11, iss. 1, pp. 99–104 (in Russian). 
Full text: