Cite this article as:
Schuchkina . A., Голядкина А. А., Aristambekova A. V., Potapov D. Y. Numerical analysis of renal artery pathologies . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 4, pp. 107-111. DOI: https://doi.org/10.18500/1816-9791-2012-12-4-107-111
Language:
Russian
Heading:
UDC:
539.3
Numerical analysis of renal artery pathologies
Abstract:
Mathematical modeling based on experimental data (ultrasonic imaging, angiography, 3D reconstruction via spiral computed tomography) was performed. Anatomically precise model of renal artery was created. Basic principles of blood flow dynamics with stressstrain state of artery walls were studied for normal, pathologic renal arteries and arteries with hemostasis of intraorganic branches.
Key words:
References
1. Snedeker J. G., Barbezat M., Niederer P., Schmidlin
F. R., Farshad M. Strain energy density as a rupture
criterion for the kidney : impact tests on porcine organs,
finite element simulation, and a baseline comparison
between human and porcine tissues // J. Biomech. 2005.
№ 38. P. 993–1001.
2. Snedeker J. G., Niederer P., Schmidlin F. R.,
Farshad M., Demetropoulos C. K., Lee J. B., Yang K. H.
Strain-rate dependent material properties of the porcine
and human kidney capsule // J. Biomech. 2005. № 38.
P. 1011—1021.
3. Weinberg K., Ortiz M. Shock wave induced damage in
kidney tissue // Computational Materials Science. 2005.
№ 32. P. 588—593.
4. Глыбочко В. П., Николенко В. Н., Понукалин А. Н.,
Потапов Д. Ю., Белова Ю. А. Биомеханические свой-
ства почки в эксперименте // Научно-теоретический
медицинский журн. Морфология. 2010. № 4. С. 56–57.
5. He X., McGee S., Coad J., Schmidlin F., Iaizzo P. A.,
Swanlund D. J., Kluge S., Rudie E., Bischof J. C.
Investigation of the thermal and tissue injury behaviour in
microwave thermal therapy using a porcine kidney model
// Intern. J. Hyperthermia. 2004. № 20(6). P. 567—593.
6. Meyer M., Velte H., Lindenborn H., Bangert A.,
Dahlhaus D., Albers P. Radiofrequency ablation of
renal tumors improved by preoperative ex-vivo computer
simulation model // J. Endourol. 2007. № 21(8). P. 886–
890.
7. He X., Bischof J. Analysis of thermal stress in
cryosurgery of kidneys // J. Biomech. Engin. 2005.
№ 127(4). P. 656–661.
8. Weinberg K., Ortiz M. Kidney damage in
extracorporeal shock wave lithotripsy: a numerical
approach for different shock profiles // Biomech. Model
Mechanobiol. 2009. № 8(4). P. 285—299.
9. Afshari E., Najarian S., Simforoosh N Application of
artificial tactile sensing approach in kidney-stone-removal
laparoscopy // Biomed. Mater. Engin. 2010. № 20(5).
P. 261–267.
10. Vahidi B. A., Fatouraee N. A numerical simulation
of peristaltic motion in the ureter using fluid structure
interactions // Proc. Conf. IEEE Engin. Med. Biol. Soc.
Lyon, France, 2007. P. 1167–1171.
11. Krywonos J., Fenwick J., Elkut F., Jenkinson I.,
Liu Y. H., Brunt J. N. H., Scott A., Malik Z., Eswar C.,
Ren X.J. MRI image-based FE modelling of the pelvis
system and bladder filling // Comput. Methods Biomech.
Biomed. Engin. 2010. № 13(6). P. 669–676.
12. Keshtkar J. Modeled current distribution inside the
normal and malignant human urothelium using finite
element analysis // IEEE Trans. Biomed. Engin. 2008.
№ 55 (2 Pt. 1). P. 733–738.
13. Kamenskiy A., Pipinos I., Desyatova A.,
Salkovskiy Y., Kossovich L., Kirillova I., Bockeria L.,
Morozov K., Polyaev V., Lynch T., Dzenis Y. Finite
Element Model of the Patched Human Carotid // Vascular
and Endovascular Surgery. 2009. Vol. 43, № 6. P. 533–
541.
14. Павлова О. Е., Грамакова А. А., Морозов К. М.,
Суслов И. И. Гемодинамика и механическое поведе-
ние бифуркации сонной артерии с патологической из-
витостью // Изв. Сарат. ун-та. Нов. сер. 2010. Т. 10.
Сер. Математика. Механика. Информатика, вып. 2.
С. 66–73.
Full text:
82