Cite this article as:

Антонов Н. Ю. On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 497-505. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-497-505


Language: 
Russian
Heading: 
UDC: 
517.518

On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables

Abstract: 

We consider one type of convergence of double trigonometric Fourier series intermediate between convergence over squares and λ-convergence for λ> 1. We construct an example of continuous functions of two variables, Fourier series of which diverges in this sense, almost everywhere.

References
  1. Тевзадзе Н. Р. О сходимости двойного ряда Фурье функции, суммируемой с квадратом // Сообщ. АН ГССР. 1970. T. 58, № 2. C. 277–279.
  2.  Fefferman C. On the convergence of multiple Fourier series // Bull. Amer. Math. Soc. 1971. Vol. 77, № 5. P. 744–745.
  3. Fefferman C. On the divergence of multiple Fourier series // Bull. Amer. Math. Soc. 1971. Vol. 77, № 2. P. 191–195.
  4. Бахбух М., Никишин Е. М. О сходимости двойных рядов Фурье от непрерывных функций // Сиб. матем. журн. 1973. Т. 14, № 6. С. 1189–1199.
  5. Бахвалов А. Н. О расходимости всюду рядов Фурье непрерывных функций многих переменных // Матем. сб. 1997. Т. 188, № 8. С. 45–62. DOI: 10.4213/sm240.
  6. Бахвалов А. Н. О λ-расходимости всюду ряда Фурье непрерывной функции многих переменных // Матем. заметки. 2002. Т. 72, № 4. С. 490–501. DOI:10.4213/mzm438.
  7. Степанец А. И. Оценки отклонений частных сумм Фурье на классах непрерывных периодических функций многих переменных // Изв. АН СССР. Сер. матем. 1980. Т. 44, № 5. C. 1150–1190.
  8.  Зигмунд А. Тригонометрические ряды : в 2 т. T. 2. М. : Мир, 1965. 538 с.
Full text:
120