Cite this article as:

Rakhmelevich I. V. On the Solutions of Multi-dimensional Clairaut Equation with Multi-homogeneous Function of the Derivatives. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 374-381. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-374-381


Language: 
Russian
Heading: 
UDC: 
517.952

On the Solutions of Multi-dimensional Clairaut Equation with Multi-homogeneous Function of the Derivatives

Abstract: 

The analysis of the solutions of Clairaut equation with an arbitrary number of independent variables is completed. It is assumed that the function of the derivatives, which is part of the equation is multi-homogeneous. This means that the set of function arguments can be represented as the union of subsets, and the function is homogeneous on each of these subsets. We consider solutions of equations depending on linear combinations of the original variables, each of which contains only a certain subset of variables. Original equation is transformed to a reduced one, which can be solved by separation of variables. It is shown that the reduced
equation has solutions in the form of arbitrary homogeneous functions with index of homogeneity 1 and solutions in the form of some generalized polynomials.

References
  1. Зайцев В. Ф., Полянин А. Д. Справочник по дифференциальным уравнениям с частными производными первого порядка. М. : Физматлит, 2003. 416 с.
  2. Камке Э. Справочник по дифференциальным уравнениям в частных производных первого порядка. М. : Наука, 1966. 260 с.
  3. Рахмелевич И. В. О некоторых уравнениях в частных производных, содержащих мультиоднородные функции // Научная дискуссия : вопросы физики, математики, информатики : материалы III междунар.  заочн. науч.-практ. конф. М. : Междунар. центр науки и образ., 2012. С. 18–23.
  4.  Рахмелевич И. В. О применении метода разделения переменных к уравнениям математической физики, содержащим однородные функции от производных // Вестн. Томск. гос. ун-та. Математика и механика. 2013. № 3. С. 37–44.
  5. Рахмелевич И. В. Об уравнениях математической физики, содержащих мультиоднородные функции от производных // Вестн. Томск. гос. ун-та. Математика и механика. 2014. № 1. С. 42–50.
  6. Ацел Я., Домбр Ж. Функциональные уравнения с несколькими переменными / пер. с англ. М. : Физматлит, 2003. 432 с.
  7. Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям. М. : Физматлит, 2001. 576 с.
  8.  Полянин А. Д., Зайцев В. Ф. Справочник по нелинейным уравнениям математической физики: точные решения. М. : Физматлит, 2002. 256 с.
Full text: