Cite this article as:

Ledkov A. S., Dyukov D. I. Research of consequences of tether's jamming in the task of payload delivery from an orbit . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 3, pp. 82-87. DOI: https://doi.org/10.18500/1816-9791-2012-12-3-82-87


Language: 
Russian
Heading: 
UDC: 
531.36

Research of consequences of tether's jamming in the task of payload delivery from an orbit

Abstract: 

In article the off-normal situation of tether's jamming at the decision of the task of payload delivery from an orbit by means of a tether is considered. The mathematical model described the space tether system consisting of the basic space vehicle, the tether and the payload is used. At creation of model the mass and damping properties of the tether weren't considered. It is supposed that basic space vehicle moves on a circle orbit. For a case of the linear law of tether development an influence of jamming of a tether on system motion has been researched. A series of numerical calculations for systems with various parameters has been led. The charts allowing to estimate influence of system's parameters on jamming consequences (a tether breakaway, collision of a tether with basic space vehicle, tether winding on basic space vehicle) have been constructed. On the basis of the analysis of these charts some general conclusions about influence of system's parameters on consequences of this off-normal situation have been formulated. 

References
1. Cartmell M. P., McKenzie D. J. A review of space
tether research // Progress in Aerospace Sciences. 2008.
Vol. 44. P. 1—21.
2. Smith H. F. The First and Second Flights of the Small
Expendable Deployer System(SEDS) // Proceedings of
the Fourth Intern. Conf. on Tethers in Space, Smithsonian
Inst., Washington, DC. 1995. P. 43–55.
3. Kruijff M., Heide E. J. van der. Qualification and
in-flight demonstration of a European tether deployment
system on YES2 // Acta Astronautica. 2009. Vol. 64,
№ 9–10. P. 882–905.
4. Белецкий В. В., Левин Е. М. Динамика космических
тросовых систем. М. : Наука, 1990. 329 с.
5. Zimmermann F., Schottle U. M., Messerschmid E.
Optimization of the tether-assisted return mission of
a guided re-entry capsule // Aerospace Science and
Technology. 2005. № 9. P. 713—721.
6. Асланов В. С., Волошенюк О. Л., Кислов А. В.,
Ящук А. В. Определение времени выживания космиче-
ской тросовой системы // Изв. Самарского науч. центра
РАН. 2010. Т. 12, № 4. С. 138–143.
7. Асланов В. С., Ледков А. С., Стратилатов Н. Р.
Пространственное движение космической тросовой си-
стемы, предназначенной для доставки груза на Зем-
лю // Общероссийский науч.-техн. журн. Полет. 2007.
№ 2. C. 28–33.
8. Асланов В. С., Ледков А. С., Пироженко А. В.,
Храмов Д. А. Исследование влияния обрыва тросо-
вой системы на возможность доставки груза на Зем-
лю // Сборник трудов XIV Всероссийского научно-
технического семинара по управлению движением и на-
вигации летательных аппаратов. Самара : СГАУ, 2011.
С. 36–39.
9. Асланов В. С. Влияние упругости орбитальной тро-
совой системы на колебания спутника // Прикладная
математика и механика. 2010. Т. 74, № 4. С. 582–593.
10. Белецкий В. В. Движение спутника относительно
центра масс в гравитационном поле. М. : Изд-во Моск.
гос. ун-та, 1975. 308 с.
 
Full text:
109